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Abstract. The present discussion is an attempt to make a step into a new direction showing that a connection between
microscopic and macroscopic degrees of freedom may be the ingredient to make progress on the understanding of tur-
bulence. Flow phenomena are captured starting from a continuous medium fluid, which permits to scale down volume
elements to infinitesimal size. Using an equation independent of scales implies in the assumption that the laws that dictate
the macroscopic dynamics do not suffer changes while altering reference lengths, or other measure quantities. Fluids are
made from atoms and molecules which obey microscopic laws and collectively constitute a stochastic system, that obeys
macroscopic laws provided by statistical thermodynamics and hydrodynamics, where material dependent parameters (vis-
cosity, thermal conductivity, specific heat, compressibility, among others) hide microscopic properties. Tracing back the
parameters until its microscopic origin, one finds a quantitative macroscopic microscopic relation viscosity and length
scales among others, that are macroscopic manifestations with microscopic origin. Thus turbulence, which is related to
the Reynolds number, may be considered an interplay of the dynamics of macroscopic and microscopic scales. The present
work is thus an attempt to put the Reynold number definition ona base dictated by a macroscopic microscopic relation,
using a simplified model motivated by Maxwell-Boltzmann transport.
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1. INTRODUCTION

Turbulence is a behavior seen in many fluid flows, which is conjectured to be driven by the inertia to viscosity force
ratio, i.e the Reynolds number. Even though research in turbulence exists for more than a century there is still no con-
sensus as how to elaborate a self-consistent and genuine theory, which describes the dynamics of a transition from a
laminar to a turbulent regime or vice versa and the geometricflow structure of turbulent phenomena. So far, it is believed
that the Navier-Stokes equation models turbulence in an adequate way, however the existence of general solutions in
three plus one space-time dimensions is still an open question [Cao & Titi (2007), Cao & Titi (2008), Constantin (2001),
Constantin et al. (2007), Fefferman (2006)].

With the present discussion we intend to make a step into a newdirection and show that a connection between micro-
scopic and macroscopic degrees of freedom may well be the crucial ingredient in oder to make progress on the subject.
Usually flow phenomena are captured starting from a continuous medium fluid, which in principle permits to scale down
volume elements to infinitesimal size. As a consequence of using an equation independent of scales implies in the as-
sumption that the laws that dictate the macroscopic dynamics do not suffer changes while altering reference lengths, or
other measure quantities. As a matter of fact, fluids are madefrom atoms and molecules which obey microscopic laws and
collectively constitute a stochastic system. This system obeys macroscopic laws provided by statistical thermodynamics
and hydrodynamics. Both realms can be described phenomenologically by macroscopic observables and material depen-
dent parameters (viscosity, thermal conductivity, specific heat, compressibility, among others), where these parameters
hide the microscopic properties. If one traces back the parameters until its microscopic origin, in principle it shouldbe
possible to find quantitative macroscopic microscopic relations beyond mere phenomenology, where viscosity and length
scales among others are macroscopic manifestations with microscopic origin.

In this line we reason that turbulence, which is related to the Reynolds number, may be considered an interplay of
the dynamics of at least two scales, a macroscopic and a microscopic one. Thus, the present work is an attempt to show
the possibilities that arise from an in our case simplified macroscopic microscopic relation, which we derive based on
a simplified model motivated by Maxwell-Boltzmann transport. To this end our article is organizes as follows, in the
next section we present the microscopic approach and introduce a length scale which relates to vorticity, in section 3.we
identify viscosity based on microscopic and thermodynamical quantities and last (section 4.) we discuss our findings and
give future perspectives.
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2. THE VORTEX CORRELATOR

Consider the fluid being composed by a particle ensemble (atoms, molecules or other micro-particles), which may
be characterized mechanically by a local particle densityn = n(x, y, z, t) and thermally by a local temperatureT =
T (x, y, z, t). In local equilibrium one has a well defined relation betweenthe temperature and a velocity scaleCth =
√

kBT
〈m〉 , the thermal velocity, withkB Boltzmann’s constant and particles with an average mass〈m〉. Here local equi-

librium signifies that there exists a volume sufficiently small that temperature variations or equivalently variationsin the
velocity distribution are negligible, but that the volume contains still a sufficiently large number of particles as to represent
a statistical ensemble.

Further we assume that there exists a particle-particle interaction with associated potential, which may in general be
of scalar, vector and tensor type depending on the structureof the particles in consideration and their properties. For
the forthcoming discussion we assume for simplicity that the interaction may be sufficiently characterized by a scalar
potentialΦ. A frequently used phenomenological potential is the Lennard-Jones potential, with its large range attraction
and short range repulsion [Maitland et al. (1981)]. Once theinteraction potential is known or defined, one may calculate
the interaction cross sectionσ, the correlated mean free pathλ = (nσ)−1 and mean free propagation timeτλ = λ

Cth

. The
fact to have a typical path length, below particles in the average do not interact, makes evident the discrepancy between
a continuous picture where in principle each infinitesimal volume element of the continuum influences the remainder of
the fluid. The microscopic picture suggests a non dense pointset of interaction centers and a complementary dense set of
interaction free points, where the microscopic behaviour,because of its different topology in comparison to a continuous
approach, may give rise to a different collective behaviour(ensemble averages) on a macroscopic scale.

On the macroscopic scale we understand the velocity field~v(x, y, z, t) = 〈~c〉 as the ensemble average of particle
velocities~c in a given volume element∆V centered at~r = (x, y, z) at an instantt. The first difficulty arises when trying
to capture a typical macroscopic length scale, based on a microscopic property, which shall be related to a strength with
which a flow is perturbed in order to present turbulent behaviour. To this end we define the dimensionless velocity vector
field ~Γ(~r, t) = ~v

Cth

and consider the field infinitesimally displaced~Γ → ~ΓδR, which shall simulate the change in the
velocity field by virtue of vorticity. One may establish the relation to the original field by an infinitesimal coordinate
transformation, which reads

~ΓδR(~r, t) = R ~Γ(R−1 ~r, t)

= (1 − δ~θ ~G) ~Γ((1 − δ~θ ~G)~r, t)

= ~Γ + δ~θ
(

−~G ~Γ + ~G
(

~r ×
(

~∇× ~Γ
)))

(1)

where~G are the generators of the transformationR represented as a vector and each component contains a3×3 transfor-
mation matrix which act on~Γ. ~θ is the infinitesimal transformation parameter, i.e. a rotation angle with respect to a given
axis θ̂. In component form and using the convention that over doubleappearing indices the sum is understood, this reads

ΓδR i = Γi + δθj (−ǫijmΓm + ǫjmnrm∂nΓi) , (2)

with ǫijk the complete antisymmetric Levi-Civita symbol.
These findings may be related to vorticity using a conceptionfrom differential geometry, i.e. the generating term in

(2) shall arise as a closed operator sequence – translation (Γ), vorticity (Ω), back translation and vorticity again, around a
plaque of infinitesimal size.

∮

ΩidΓj ∝ −ǫijmΓm + ǫimnrm∂nΓj (3)

An expression compatible with (3) and for any volume of interest has then the following form

Ωi =
1

V

∫

V

∂Γj

∂t
(−ǫijmΓm + ǫimnrm∂nΓj) d3r . (4)

One identifies two contributions, an extrinsic one which explicitly depends on the position and a second contribution
which is position independent and thus may have only intrinsic origin. The presence of the second term can describe
vorticity without the phenomenon of creating eddies (for instance present in shear flows), whereas the first term creates
eddies even for a macroscopic velocity field which derives asa gradient from a scalar potential, for which the second
term cancels out. A further comment is in order here, the intrinsic term does make sense only if microscopic degrees of
freedom exist that constitute the macroscopic fieldΓ, since it depends only on the velocity field and its temporal variation
in different directions.

From this quantity (4) one may derive a macroscopic length scale which shall be used in order to define the Reynolds
number. One may recognize thatΩ contains theΓ fields in a bi-linear form, so that the vorticity may be generalized to a
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correlation like function, henceforth called vorticity correlator

Υt(t, t
′) =

1

V

∥

∥

∥

∥

∫

V

∂Γj

∂t
(t) (−ǫijmΓm(t′) + ǫimnrm∂nΓj(t

′)) d3r

∥

∥

∥

∥

(5)

In the limit t′ → t the correlator turns vorticity. Since the vorticity may be related to the angular frequency of an eddy,
the correlator may be used to measure how far a particle with velocityCth propagates across an eddy with non-vanishing
correlations. The length scaleΛ is then defined by the correlation time and thermal velocity via the implicit relation

Λ = τCth =
Cth√

2

(∣

∣

∣

∣

∫ τ

0

Υ0(t, 0)

Υt(t, 0)
dt

∣

∣

∣

∣

)
1

2

. (6)

where

Υ0(t, 0) =
1

V

∥

∥

∥

∥

∫

V

Γj(t) (−ǫijmΓm(0) + ǫimnrm∂nΓj(0)) d3r

∥

∥

∥

∥

(7)

and the thermal noise limitlimτ→0
1

τ

∫ τ

0

Υ0

Υt

dt = 2.
So far the velocity field~v = 〈~c〉, the macroscopic length scaleΛ are available from expectation values of a microscopic

ensemble. The remaining quantities like the particle density and the viscosity may be determined only from an analysis
of the transport equation, i.e. a Navier-Stokes like equation, which may be derived starting from the Maxwell-Boltzmann
transport equation.

3. THE TRANSPORT EQUATION

The Maxwell-Boltzmann equation describes the time evolution of the pseudo-local expectation values in a transport
phenomenon. Here pseudo-local signifies local in a macroscopic (continuous) sense but discrete (by particle nature) in
the microscopic sense. Its generic form is as follows [Muncaster (1979)]

∂

∂t
n 〈O〉 +

∂

∂rµ

n 〈cµO〉 −
〈

∂O
∂cµ

bµ

〉

= n

(

δ 〈O〉
δt

)

Coll.

(8)

A similar equation to Navier-Stokes is obtained substituting the operator to represent momentum transportn 〈O〉 =

n 〈mCµCν〉 = pµν also recognized as the pressure tensor; here~C = ~c−~v. In thermal equilibrium obviouslypµν = pδµν

holds and since dissipative contributions are no longer at work, the diagonal (equilibrium) contributions to the pressure
tensor contribute only to the homogeneous solution of the transport equation. We are interested in the dissipative partof
the equation and hence reduce the pressure tensor to the friction pressure tensor

πµν = nm

〈

CµCν − 1

3
C2δµν

〉

with zero traceT r{πµν} = 0.The second term, after decomposition and some algebraic manipulations separates a term
with constant temperature and a velocity field gradient, from a term that represents heat flux, which is kinetic energy
transport

qµ =
n

2
m

〈

C2Cµ

〉

,

respectively. For simplicity we ignore possible contributions of an external force field and its resulting acceleration bµ, so
that the term still to be determined is the right hand side of equation (8). A convenient way to simplify the equation is to
approximate the collision term by an average friction pressure change

δπµν

δt
≈ πµν

τp

(9)

which renders the original equation a transport relaxationequation [Cheng (1995), Banda et al. (2008)].

∂

∂t
πµν + 2nkBT

(

1

2

(

∂vµ

∂rν

+
∂vν

∂rµ

)

− 1

3

∂vλ

∂rλ

δµν

)

+
4

5

(

1

2

(

∂qµ

∂rν

+
∂qν

∂rµ

)

− 1

3

∂qλ

∂rλ

δµν

)

+
πµν

τp

= 0 (10)

The relaxation time constantτp for phenomenological potentials and for systems not far from equilibrium in (10) may
be related to the microscopic cross section in the spirit of Chapman-Cowling [Maitland et al. (1981)]. The expression
below shows the mechanical relaxation time, for an isotropic two particle interaction central potential.

τp =
5

16
√

π

1

nCth

(
∫ ∞

0

∫ π

0

e−u2

u7(1 − cos2(θ))σ(θ,
√

2Cthu) sin(θ) dθ du

)−1

=
5

16
√

π

1

nCthI2

(11)
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Hereu is the relative velocity between the collision partners in multiples of
√

2Cth, θ signifies the scattering angle, and
Cth a velocity scale, i.e. the thermal velocity.

A local collision operator is responsible for the space-time evolution of the distribution in consideration. The collision
term depends in general on microscopic dynamics which in many cases is not exactly known or is too complex to be
evaluated analytically. However, for a number of applications there do exist interaction models [1] that are sufficientto
capture qualitatively as well as to a certain precision quantitatively properties of the fluid flow.

The equation above results in the Navier-Stokes like equation, if the following phenomenological identity holds

πµν = −ηV

∂vλ

∂rλ

δµν − 2η

(

1

2

(

∂vµ

∂rν

+
∂vν

∂rµ

)

− 1

3

∂vλ

∂rλ

δµν

)

with η shear andηV volumetric viscosity, respectively. By comparison one identifies the shear viscosity as

η = kBTτp =
5nkBT

16
√

πCthI2

=
5n 〈m〉Cth

16
√

πI2

.

Upon substitution of the found quantities into the traditional Reynolds number definition and replacing the usually em-
ployed macroscopic length by the vortex correlator lengthΛ one arrives at an expression which is characterized by two
macroscopic-microscopic ratios, the correlation lengthΛ against the mean free pathλ and the macroscopic flow velocity
v against the thermal velocityCth besides a factor which is determined from the collision integral and the total collision
cross sectionσT .

Re =
ρΛv

η
=

16
√

π

5

I2

σT

Λ

λ

v

Cth

(12)

For a collision model where the cross sectionσ(θ,
√

2Cthu) does not depend on the scattering angle the integral can be
solved analytically and isI2 = σT

π
.

4. CONCLUSION

In the present discussion we established a connection between microscopic and macroscopic lengths and velocities
which redefines the traditional Reynolds number. It is evident from its original definition that one needs a reference length
in order to render the transport equation adimensional. In any case this length scale shall somehow synthesize the influence
of boundaries and/or obstacles. Since boundaries select specific solutions from a manifold the velocity field that results
from the solution of the transport equation contains this information and may thus be used to define a problem related
length scale which we introduced by the vorticity correlator – a macroscopic reference length. We introduced the correlator
motivated by the phenomenon that once a flow changes from laminar to turbulent flow perturbations perpendicular to the
local flow velocity become important. In order to see what such a contribution looks like we analyzed the changes in the
vector field under infinitesimal rotation. Making contact tothe vorticity definition and generalizing our expression led to
the vorticity correlator which yields only significant contributions if the afore mentioned perturbations are presentin the
field. These perturbations are evidently a manifestation ofinner and/or outer boundaries present in the problem under
consideration.

In our approach for vorticity one identifies an extrinsic (position dependent) and intrinsic contribution. The presence
of the intrinsic term accounts for vorticity although the macroscopic velocity field derives from a gradient of a scalar
potential, for which the curl of the extrinsic term cancels out. An intrinsic term can only be attributed to intrinsic degrees
of freedom of a continuous macroscopic field and thus needs further (microscopic) degrees of freedom. In other words
the macroscopic field is nothing but a macroscopic mean field from the microscopic point of view.

The counterpart to the vorticity correlator – the microscopic length – has its origin in the interpretation of the dissi-
pation parameter, i.e. the viscosity in terms of particle collisions which through the cross section supplies with the mean
free path of the particles that constitute the fluid. At this length the scaling symmetry of macroscopic transport breaks
down. It is noteworthy that these lengths may be of macroscopic magnitude as for instance severalcm in a gas. The
microscopic picture for dissipation circumvents a problemthat arises if the fluid in consideration behaves approximately
as an ideal fluid. In the classical Reynolds definition this means that the viscosity tends to small values which rises the
Reynolds number in contradiction to the fact that without dissipation turbulence will not occur. This is different withthe
microscopic definition where the mean free path tends to infinity (or at least is huge) which drives the Reynolds number
close to zero.

A further effect comes from thermal motion in relation to theflow velocity. In a gas the thermal velocity may be orders
of magnitude larger than the flow velocity, which means that thermal noise may destroy coherent structures as present
in turbulence, because particles propagate back and forth in the fluid over lengths larger than the effective displacement
length of the fluid. The closer the two velocities are the lessis the influence of noise in the flow, and the formation of
coherent flow patterns are possible. Such a collective behaviour may not be understood from a purely macroscopic and
continuous picture.



Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

From our findings we understand a new meaning of scale invariance of the macroscopic transport equation – hydro-
dynamical similarity. Apart from the collision model whichenters as a factor, which for a variety of interaction potentials
is of the order of magnitude of100, there are two relevant ratios responsible for similarity,the vorticity correlation length
times the flow velocity as macroscopic expectation values compared to the mean free path times the thermal velocity, i.e.
two microscopic reference quantities.

Since our considerations are an attempt to approach the turbulence problem from a microscopic-macroscopic interplay
(few body interaction – collective mean field dynamics) the present discussion is a first step into a new direction. The
theoretical conception presented in this work may be applied to experimental findings as for instance the visualisationof
the time evolution of flows and can be compared to the simulations based on the Maxwell-Boltzmann transport equation.
Such an analysis is necessary to support our new definition which hopefully will prove useful in the future to classify the
regimen in flows and may bring benefit for applications as for instance in the problem of dispersion of pollution in the
atmosphere and water. These challenges define the next stepsof future activities.
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