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Abstract. The present discussion is an attempt to make a step into a imegtion showing that a connection between
microscopic and macroscopic degrees of freedom may be gredient to make progress on the understanding of tur-
bulence. Flow phenomena are captured starting from a cowotits medium fluid, which permits to scale down volume
elements to infinitesimal size. Using an equation indepetafescales implies in the assumption that the laws thaatict
the macroscopic dynamics do not suffer changes while atiegference lengths, or other measure quantities. Fluids a
made from atoms and molecules which obey microscopic ladgalfectively constitute a stochastic system, that obeys
macroscopic laws provided by statistical thermodynamizsiaydrodynamics, where material dependent parametess (vi
cosity, thermal conductivity, specific heat, compresgibihmong others) hide microscopic properties. Tracinglothe
parameters until its microscopic origin, one finds a quaatiite macroscopic microscopic relation viscosity and kang
scales among others, that are macroscopic manifestatidgthsnaicroscopic origin. Thus turbulence, which is related t
the Reynolds number, may be considered an interplay of thendizs of macroscopic and microscopic scales. The present
work is thus an attempt to put the Reynold number definitioa base dictated by a macroscopic microscopic relation,
using a simplified model motivated by Maxwell-Boltzmanngpeort.
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1. INTRODUCTION

Turbulence is a behavior seen in many fluid flows, which is ectnjred to be driven by the inertia to viscosity force
ratio, i.e the Reynolds number. Even though research inuteinioe exists for more than a century there is still no con-
sensus as how to elaborate a self-consistent and genuiosy,tihich describes the dynamics of a transition from a
laminar to a turbulent regime or vice versa and the geomibrcstructure of turbulent phenomena. So far, it is believed
that the Navier-Stokes equation models turbulence in aquate way, however the existence of general solutions in
three plus one space-time dimensions is still an open quregdiao & Titi (2007), Cao & Titi (2008), Constantin (2001),
Constantin et al. (2007), Fefferman (2006)].

With the present discussion we intend to make a step into adiveation and show that a connection between micro-
scopic and macroscopic degrees of freedom may well be thegatingredient in oder to make progress on the subject.
Usually flow phenomena are captured starting from a contiaumeedium fluid, which in principle permits to scale down
volume elements to infinitesimal size. As a consequenceinfju equation independent of scales implies in the as-
sumption that the laws that dictate the macroscopic dymadocnot suffer changes while altering reference lengths, or
other measure quantities. As a matter of fact, fluids are rfradeatoms and molecules which obey microscopic laws and
collectively constitute a stochastic system. This systbeys macroscopic laws provided by statistical thermodyosim
and hydrodynamics. Both realms can be described phenoogioally by macroscopic observables and material depen-
dent parameters (viscosity, thermal conductivity, spetiéat, compressibility, among others), where these pdesise
hide the microscopic properties. If one traces back therpaters until its microscopic origin, in principle it sholé
possible to find quantitative macroscopic microscopictiatas beyond mere phenomenology, where viscosity andtengt
scales among others are macroscopic manifestations wittogstiopic origin.

In this line we reason that turbulence, which is related toReynolds number, may be considered an interplay of
the dynamics of at least two scales, a macroscopic and a soimp@ one. Thus, the present work is an attempt to show
the possibilities that arise from an in our case simplifiectcmscopic microscopic relation, which we derive based on
a simplified model motivated by Maxwell-Boltzmann trandpofo this end our article is organizes as follows, in the
next section we present the microscopic approach and inteod length scale which relates to vorticity, in sectione3.w
identify viscosity based on microscopic and thermodynahgoantities and last (section 4) we discuss our findings an
give future perspectives.
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2. THE VORTEX CORRELATOR

Consider the fluid being composed by a particle ensembleng@tmolecules or other micro-particles), which may
be characterized mechanically by a local particle density n(x,y, z,t) and thermally by a local temperature =
T(xz,y,z2,t). Inlocal equilibrium one has a well defined relation betw#entemperature and a velocity scélg, =

A /%, the thermal velocity, withkz Boltzmann’s constant and particles with an average niags Here local equi-

librium signifies that there exists a volume sufficiently dinttaat temperature variations or equivalently variatiamshe
velocity distribution are negligible, but that the volumantains still a sufficiently large number of particles asdpresent
a statistical ensemble.

Further we assume that there exists a particle-partiokantion with associated potential, which may in general be
of scalar, vector and tensor type depending on the structutiee particles in consideration and their properties. For
the forthcoming discussion we assume for simplicity that ititeraction may be sufficiently characterized by a scalar
potential®. A frequently used phenomenological potential is the Ledsines potential, with its large range attraction
and short range repulsion [Maitland et al. (1981)]. Oncenkeraction potential is known or defined, one may calculate
the interaction cross section the correlated mean free path= (no)~! and mean free propagation timg = C . The
fact to have a typical path length, below patrticles in theage do not interact, makes evident the dlscrepancy between
a continuous picture where in principle each infinitesin@lme element of the continuum influences the remainder of
the fluid. The microscopic picture suggests a non dense peirdf interaction centers and a complementary dense set of
interaction free points, where the microscopic behavioecause of its different topology in comparison to a cortiral
approach, may give rise to a different collective behav{iensemble averages) on a macroscopic scale.

On the macroscopic scale we understand the velocity fieldy, z,t) = (¢) as the ensemble average of particle
velocitiesé in a given volume elememk V' centered af = (z, y, z) at an instant. The first difficulty arises when trying
to capture a typical macroscopic length scale, based on @saigpic property, which shall be related to a strength with
which a flow is perturbed in order to present turbulent behaviTo this end we define the dimensionless velocity vector
field F(r t) = romn and consider the field infinitesimally dlsplacEdH ['sk, which shall simulate the change in the
velocity field by virtue of vorticity. One may establish thelation to the original field by an infinitesimal coordinate
transformation, which reads

Tsr(7t) = RIR L)
_ (175§G)f(( 50G) 7, t)
— 4 al(-GT+G (7x (¥xT))) .

whereG are the generators of the transformatidmepresented as a vector and each component contairgaransfor-
mation matrix which act oii. ¢ is the infinitesimal transformation parameter, i.e. a fotengle with respect to a given
axisd. In component form and using the convention that over doapfeearing indices the sum is understood, this reads

Ispi=Ti+060; (—€ijmDIm + €jmnrmOnli) | 2

with ;5 the complete antisymmetric Levi-Civita symbol.

These findings may be related to vorticity using a concegdtiom differential geometry, i.e. the generating term in
(2) shall arise as a closed operator sequence — transl&jpwa(ticity (2), back translation and vorticity again, around a
plaque of infinitesimal size.

%Qldfj X _eijml—‘m + Gimn’l“manl—‘j (3)
An expression compatible with (3) and for any volume of iattthas then the following form
1 or;
Qi = V /V 8—; (7€ijmrm + eimnrm[?nfj) d3T . (4)

One identifies two contributions, an extrinsic one whichliexty depends on the position and a second contribution
which is position independent and thus may have only intringigin. The presence of the second term can describe
vorticity without the phenomenon of creating eddies (fatamce present in shear flows), whereas the first term creates
eddies even for a macroscopic velocity field which derivea gsadient from a scalar potential, for which the second
term cancels out. A further comment is in order here, thénsitc term does make sense only if microscopic degrees of
freedom exist that constitute the macroscopic fléldince it depends only on the velocity field and its tempoaailation
in different directions.

From this quantity (4) one may derive a macroscopic lengaesehich shall be used in order to define the Reynolds
number. One may recognize thatcontains thd" fields in a bi-linear form, so that the vorticity may be geiiessl to a
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correlation like function, henceforth called vorticityrcelator
ar;
8—;(t) (_eijmrm(t/) + €imnTmOnl; () d*r
14
In the limit ¢’ — ¢ the correlator turns vorticity. Since the vorticity may ledated to the angular frequency of an eddy,
the correlator may be used to measure how far a particle \eithcity C;;, propagates across an eddy with non-vanishing
correlations. The length scaleis then defined by the correlation time and thermal velodiytie implicit relation

Tt 1) = % ’ ®)

iy = G (] [T Xolt.0) ‘ ’
A=rCn="5 (/ T (t,0) dt) ' ©
where
1 3
To(t,O) = V /VF](t) (—e”mfm(()) + elmnrm&lF](O)) d T (7)

and the thermal noise limitm o 2 [ %dt =2.

So far the velocity field’ = (¢), the macroscopic length scaleare available from expectation values of a microscopic
ensemble. The remaining quantities like the particle dgrsid the viscosity may be determined only from an analysis
of the transport equation, i.e. a Navier-Stokes like equativhich may be derived starting from the Maxwell-Boltzman

transport equation.
3. THE TRANSPORT EQUATION

The Maxwell-Boltzmann equation describes the time evotutf the pseudo-local expectation values in a transport
phenomenon. Here pseudo-local signifies local in a macpds¢oontinuous) sense but discrete (by particle nature) in
the microscopic sense. Its generic form is as follows [Mstea(1979)]

0 0 00 5(0)

il - —({==p, = =7 8

a0+ gm0 <acu “> " < 5t >CO”_ ®
A similar equation to Navier-Stokes is obtained substigithe operator to represent momentum transpd@®) =

n(mC,C,) = p,, also recognized as the pressure tensor; bierec — ¢. In thermal equilibrium obviously,,, = pd,..

holds and since dissipative contributions are no longeraakwthe diagonal (equilibrium) contributions to the prags

tensor contribute only to the homogeneous solution of tesjport equation. We are interested in the dissipativegbart
the equation and hence reduce the pressure tensor to thenfippcessure tensor

1
Ty = NM <CMC,, — 5026Mu>

with zero traceZ r{r,, } = 0.The second term, after decomposition and some algebraigpmiations separates a term
with constant temperature and a velocity field gradientnfioterm that represents heat flux, which is kinetic energy
transport
n
qu = §m<CQCM> J

respectively. For simplicity we ignore possible contribat of an external force field and its resulting accelereljg so
that the term still to be determined is the right hand sidegofagion (8). A convenient way to simplify the equation is to
approximate the collision term by an average friction puesshange

O v

~ 9
ot Tp 9)
which renders the original equation a transport relaxatiguation [Cheng (1995), Banda et al. (2008)].
0 1 /0v ov, 1 0vy 4 (1 (0q oqy 1 g T
. v 2 T . b - 5 a_ v - . b - 5 a_ v - - 1
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The relaxation time constanj for phenomenological potentials and for systems not fanfeguilibrium in (10) may
be related to the microscopic cross section in the spirit ledigtnan-Cowling [Maitland et al. (1981)]. The expression
below shows the mechanical relaxation time, for an isotropo particle interaction central potential.

5 1 oo T, ) ' —1 5 1
= a1 - 0))o(0,v2 0) do d =
Tp 16/ nCin </0 /0 e " u"(1 — cos?(0))o (6, V2C,u) sin() u) 1677 nConl

(11)
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Hereu is the relative velocity between the collision partners iltiples of /2C;,, 6 signifies the scattering angle, and
Cyy, a velocity scale, i.e. the thermal velocity.

A local collision operator is responsible for the spaceetgwolution of the distribution in consideration. The it
term depends in general on microscopic dynamics which inyncases is not exactly known or is too complex to be
evaluated analytically. However, for a number of applimasi there do exist interaction models [1] that are sufficient
capture qualitatively as well as to a certain precision tjtatively properties of the fluid flow.

The equation above results in the Navier-Stokes like egnatifi the following phenomenological identity holds

ov 1 /0v v, 1 Ovy
v — — — I/72 = a ——-—=9 v
M nv@m . 77(2 (87“” + 87““) 30ry " >

with 1 shear andy, volumetric viscosity, respectively. By comparison oneniifées the shear viscosity as

5SnkpT 5n (m) Ciyp,
n = kBTTp = =
16/7Cip 1> 16/71>

Upon substitution of the found quantities into the tradiibReynolds number definition and replacing the usually em-
ployed macroscopic length by the vortex correlator lenfythne arrives at an expression which is characterized by two
macroscopic-microscopic ratios, the correlation lengtiigainst the mean free pathand the macroscopic flow velocity
v against the thermal velocity,;, besides a factor which is determined from the collisiongratand the total collision
Cross sectiomr.
pAv 16T I A v

=2 12
n 5 or \Chu (12)

Re =

For a collision model where the cross sectidl, v/2C;,u) does not depend on the scattering angle the integral can be
solved analytically and i, = 2.

4. CONCLUSION

In the present discussion we established a connection betmécroscopic and macroscopic lengths and velocities
which redefines the traditional Reynolds number. Itis evidiem its original definition that one needs a referencgtien
in order to render the transport equation adimensionahyrcase this length scale shall somehow synthesize therircue
of boundaries and/or obstacles. Since boundaries selecifispsolutions from a manifold the velocity field that resul
from the solution of the transport equation contains thierimation and may thus be used to define a problem related
length scale which we introduced by the vorticity correfata macroscopic reference length. We introduced the aiorel
motivated by the phenomenon that once a flow changes fronm&rto turbulent flow perturbations perpendicular to the
local flow velocity become important. In order to see whathsacontribution looks like we analyzed the changes in the
vector field under infinitesimal rotation. Making contacthe vorticity definition and generalizing our expressioh te
the vorticity correlator which yields only significant coibutions if the afore mentioned perturbations are presetite
field. These perturbations are evidently a manifestatioimmér and/or outer boundaries present in the problem under
consideration.

In our approach for vorticity one identifies an extrinsic gpiion dependent) and intrinsic contribution. The presenc
of the intrinsic term accounts for vorticity although the ar@scopic velocity field derives from a gradient of a scalar
potential, for which the curl of the extrinsic term cancels.dAn intrinsic term can only be attributed to intrinsic degs
of freedom of a continuous macroscopic field and thus neetiseiu(microscopic) degrees of freedom. In other words
the macroscopic field is nothing but a macroscopic mean field the microscopic point of view.

The counterpart to the vorticity correlator — the microscdength — has its origin in the interpretation of the dissi-
pation parameter, i.e. the viscosity in terms of particléisions which through the cross section supplies with tleam
free path of the particles that constitute the fluid. At tleisdth the scaling symmetry of macroscopic transport breaks
down. It is noteworthy that these lengths may be of macrdasampgnitude as for instance sevetal in a gas. The
microscopic picture for dissipation circumvents a probteat arises if the fluid in consideration behaves approxéhgat
as an ideal fluid. In the classical Reynolds definition thisngethat the viscosity tends to small values which rises the
Reynolds number in contradiction to the fact that withossgbation turbulence will not occur. This is different witie
microscopic definition where the mean free path tends toitpf{or at least is huge) which drives the Reynolds number
close to zero.

A further effect comes from thermal motion in relation to flusv velocity. In a gas the thermal velocity may be orders
of magnitude larger than the flow velocity, which means thatmal noise may destroy coherent structures as present
in turbulence, because particles propagate back and fottieifluid over lengths larger than the effective displaceme
length of the fluid. The closer the two velocities are the Isghe influence of noise in the flow, and the formation of
coherent flow patterns are possible. Such a collective hetnamay not be understood from a purely macroscopic and
continuous picture.
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From our findings we understand a new meaning of scale im@giaf the macroscopic transport equation — hydro-
dynamical similarity. Apart from the collision model whielmters as a factor, which for a variety of interaction pagat
is of the order of magnitude a0’, there are two relevant ratios responsible for similatktg, vorticity correlation length
times the flow velocity as macroscopic expectation valuespared to the mean free path times the thermal velocity, i.e.
two microscopic reference quantities.

Since our considerations are an attempt to approach thelémd®e problem from a microscopic-macroscopic interplay
(few body interaction — collective mean field dynamics) thesgnt discussion is a first step into a new direction. The
theoretical conception presented in this work may be agptieexperimental findings as for instance the visualisation
the time evolution of flows and can be compared to the simaratbased on the Maxwell-Boltzmann transport equation.
Such an analysis is necessary to support our new definitiachvitopefully will prove useful in the future to classify the
regimen in flows and may bring benefit for applications as fistance in the problem of dispersion of pollution in the
atmosphere and water. These challenges define the nexbétegpsre activities.
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