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Abstract. This paper presents a method for estimating joint torques in closed-chain mechanisms with a prescribed kine-
matics and redundant actuation, i.e., with more actuators than degrees of freedom. The dynamics of the multibody system
is described by a set of Differential Algebraic Equations (DAE). Inverse dynamics of the system does not have an unique
solution, since there are more unknowns (actuator torques) than equations. This problem s traditionally treated by using
the Moore Penrose pseudo-inverse matrix. Here, an alternative formulation based on a variation of Valasek's Transmis-
sion Matrix approach is proposed. A four bar mechanism, with a crank rotating at constant velocity, was analyzed to
serve as benchmark. In addition, the regular case with one torque actuator is solved and compared to two, three and four
actuators case.
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1. INTRODUCTION

Parallel manipulators with actuator redundancy have baatiesl in the last few years by several authors. These
mechanisms are characterized by closed kinematic chaihsmwaire actuators than degrees of freedom. This configuratio
offers several advantages over their serial counterpaeswsed in industrial robots and machine tools, since: higieer
mechanical stiffness (Miller, 2001), higher trajectorylgrositioning accuracy (Nakamura and Ghodoussi, 1989ghnig
load capacity (Dasgupta and Mruthyunjaya, 1998) and smaltdile mass (Miller, 2001). The existence of kinematical
singularities is a key problem in the analysis of closed tina&chanisms. It becomes critical when a mechanism reaches
the boundaries of the space. According to Cheng et al. (20@8n a parallel manipulator moves towards a singular
configuration, its stiffness and accuracy properties duidkteriorates.

Liu et al. (2001) studied the undesired effects of singtytaver parallel manipulators. To solve this problem, they
suggested the introduction of three types of redundangyirfematic redundancy, where the number of manipulator
Degrees of Freedom (DOF) is greater than end-effectoispyier constraining, i.e., increase the number of closed
kinematic chains and (iii) over actuation, when the numbertuators is greater than DOFs. This opinion is supported
by Cheng et al. (2003), who agree that redundant actuatiovides effective means for eliminating singularities of
parallel manipulators, thereby improving its performariaasek et al. (2004) argues that Parallel Kinematic Maehi
(PKM) have advantages over their serial counterparts tsecafi) machine tool frame loading by bending is replaced
by tension/compression, (ii) large moving masses are estiand (iii) backslashes and inaccuracies in serial kinemat
chains are reduced. However, when PKM are exactly actuagedhle number of actuators is equal to the number of end-
effector DOFs), they suffer of limited workspace, have nmiform mechanical properties and problems with accuracy
and calibration. The principle of redundant actuation egabto PKMs can solve all this problems as was shown by
Valasek et al. (2005) with the developmentfToijoint 900H machining center .

In addition, redundant actuation often arises in biomea&models. It is present in musculo-skeletal systems: (i)
when individual muscles are considered as single actuatatgii) when the net effect of all muscles that crosses 4 join
is considered a single torque actuator. An example of thedase, as presented by Hatze (2000), considers 42 DOFs,
with 240 musculo-skeletal actuators for a three dimensibnenan body model. In the second case, the simplifying
assumption of torque actuators may turn the model redurooant.

While in human posture models Menegaldo and Weber (1997)n B4989), Cahouet et al. (2002) the number of
actuators is equal to the DOFs, in pedaling (Hull et al., 298%ving (Lee et al., 2005) and double support phase of gait
(Pandy and Berme, 1988) — where a closed kinematic chairesept — the number of actuators outcomes the number
of degrees of freedom. In short, redundancy in biomechasiaschallenging problem because, as Hatze (2000) says,
inverse dynamics does not have unique solution. Theredifferent control histories can reproduce the same (sgekifi
kinematics. In particular, some relevant questions maydokessed in this context. For instance, how actuator tarque
or forces are distributed along the additional redundatutzdiors? If the number of actuators is changed, is it passibl
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choose an specific set with smaller maximum torque outputishnare, therefore, more lightweight?

In this paper, a four bar mechanism with one, two, three and tiarque actuators is studied, as decribed in Fig. 1.
The inverse dynamics of the non-redundant mechanism is ricaiig calculated with the method presented by Haug
(1989). Using the framework presented by Haug, a modifinatiche generalized forces term, based on a variation of
Valasek’s Transmission Matrix (Valasek et al. 2005), isddticed to account for additional torques. The resultastesy
of equations is solved via pseudo-inverse approach.

X

0 X
Figure 1. Diagram of four bar mechanism showing refereremmés, Cartesian coordinates and actuator positions.

2. THEORETICAL FRAMEWORK
2.1 Kinematic Analysis

The first step in kinematic analysis is to write the exprassiof constraint vecto®(q,t). Constraint vector is
composed of thé&inematic constraints ®(q, ) anddriving congtraints ®”(q,¢). Kinematic constraints represents
physical connections between bodies, which are functigstes coordinates, but do not depend explicitly on time.yThe
are be graphically expressed in Fig. 2.

In addition to kinematic constraints, the motion of the natbm is described by driving constraints, which are the
time dependent equations that prescribes the active cwdedi. Kinematic and driving constraints can be assembled
together as in Eq. (1). This equation can be solved with a biekaphson algorithm.

®"(q,t) }
®(q,t) = ’ =[0 1
@)= gody |- 10 &
Differentiating Eq. (1) once we have the expression showknai(2), where®, is the Jacobian matrix ardl, is the
derivative of® with respect to time. I is non-singular, Eq. (2) can be solved for velocitigs
P,q+P, =0 (2)
Differentiating Eq. (1) twice, Eq. (3) is obtained, whe€®, - 4)4 is the same a8(®, - q)/0q. The term®,4 is a

matrix whose elements are the time derivatives of Jacobanxrand®,, is the second time derivative of Eq. (1). Again,
if &, is non-singular it is possible to solve Eq. (3) for acceleratq.

(‘I)q ) ('l)q('l +2®1qq+ Pqq + P =0 (3)
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(a) Absolute distance constraint to determine the posi-  (b) Revolute joint constraint at point B
tion of point A.
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(c) Revolute joint constraint at point C (d) Absolute distance constraint to determine the posi-
tion of point D

Figure 2. Graphical representation of constraint equatmasent at vecteb’ .

2.2 Dynamic Analysis

After the accelerations of each coordinate are found in therkatic analysis, the variational equation of motion of a
system withnb bodies, can be written follows. It is derived from the prjsleiof virtual work.

nb
Z 6q; [M;&; — Q] =0 (4)
i=1

INEQ. (4),0q; = [z, 6y, 06T are the virtual displacements, alid= [i;, §;, #s]T the accelerations of the Cartesian
coordinates associated to the badyM; = diag(m;, m;, J;) is a diagonal mass matrix of bodyandQ; is a three
element vector with all forces and torques (internal anérel) that act over bodyin z, y e ¢, respectively. Finallypb
is the number of bodies in the system. Defining compositeoveets:

a=[af, a3 dpl” (5)
M :diag(Ml,Mg,...,Mnb) (6)
Q:[ ?7an"'aQ£b]T (7)

it is possible to re-write the variational form of system atjons of movementin a compact form:

oq" [Mg—-Q]=0 ®)

At this point it is convenient to split the vect@) = Q¢ + Q# into 2 other vectors, one with internal (constraint) and
the other with external (active) forces.

iq" [Mg-Q“ -Q"] =0 9)

If q is a vector with3nb Cartesian coordinates and the systemshdggrees of freedom, it is necessary to introduce
3nb—n kinematic constraints with its associated Lagrange mlidtip. The theorem of Lagrange multipliers Haug (1989)
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states that ifq” Q® = 0 for all 6q such thatb,dq = 0, then there exists a vectdy; calledLagrange multiplier, such
thatdq” Q¢ + dq” @, X = 0. The fact thatq” Q° = 0 is a consequence of the workless condition. If for@s do
no work, thus the admissible displacemedsare perpendicular t©. A complete proof of the theorem of Lagrange
multipliers can be found in Haug (1992). Proceeding this,way

Q%+ ®,"A=0 (10)

Substituting Eq. (10) into Eq. (9), and rearranging the tewe obtain the Differential Algebraic Equation form of a
multibody system equations of motion .

Mg+ &, A =Q* (11a)
®(q,t) =0 (11b)

Equations (11a) and (11b) are said to Digferential Algebraic Equations (DAE) of index 3. DAE is system of
differential equations that describes the behavior of aadyinal system which is coupled to a set of algebraic equstion
that should be always satisfied.A DAE can be written as an O[fErentiating Eq. (11a) twice. In doing so, it is
convenient to isolate the terfh, g in Eq.(3):

vY=—(Pq-d)q 4 —2P1qq — Pus (12)
Thus, Egs. (11a) and (11b) can be written in an unified form:
M o |[a]_[Q"
BRI @)

2.3 Inversedynamicsof aregularly actuated mechanism

Rewriting Eg. (13) we have

Mg+ &, X = Q* (14a)
Pqq = (14b)
It can be shown that Lagrange multipliers uniquely deteawsithe constraint forces and torques that act in the system.
Thus, inverse dynamics can be calculated solving sequigriigs. (12) and (15b). In the example studied the last term

of vector will be the desired actuator torque at joint A (Fig. 1), besmthe driving constraint was inserted at the last
element of vectofP (see Eq. (21)).

q=®q 'y (15a)
A= (®47)7 Q" - M4) (15b)

2.4 Inverse dynamics of aredundantly actuated mechanism

Valasek and Sika (2001) presents a modified version of EQ)(itroducing the terri'n at the right side of Eq. (14a),
whereT is the Transmission matrix andn is vector of external actuators. The Transmission matrokeiined asl’ =
0s/0q”, wheres is the vector of coordinates over which the actuators direct.

MG + ®," A= Q* 4+ Tn (16)

Equation (16) can be re-written in the form of Eq. (17) in arteput all unknown quantities\(andn) in the same
column vector.

@1 [ |- ot v (17)
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Proceeding this way one can define the mak= [®,”, —T)] by juxtaposing matricel®,]” and[—T]. Addition-
ally, defining[G] = Q» — Mg it is possible to find internal forces and redundant actutateglies solving Eq. (18) where
ptt=pP" (P- PT)71 is the Moore-Penrose pseudo inverse matrix (Falco, 2005).

X =PtG (18)

It should be noted thd@ has more columns than rows and therefore it cannot be solvedrventional methods. An
important property of pseudo inverse matrix is that a sofutif the system of equations (18) is equivalent to the smhuti
of optimization problem defined at Eqgs. (19a) and (19b). &foee, the solution obtained is optimal, in the sense of the
least squares of vectk.

minimize: g = ||X|[3 (19a)
subjectto: P-X =G (19b)

3. COMPUTATIONAL IMPLEMENTATION

The reference frames of four-bar mechanism are depicteidirLlFThe lengths of the bars ate = 0,5m, Ly, = 0,9
m, L3 =0,7meLy = 1,0 m and their masses; = 6,590 kg, mo = 11,550 kg andms = 9,070 kg. The center of
mass are in the middle of all bars and moment of inertia welaitzed by.J = %mLQ. The crank is assumed to turn
with a constant velocity{) of 60 rpm around point A. The study will comprise a compleitation of the crank which
takes 1 second to be performed. Thus, the vector of coortigas defined bellow.

a=[z1, y1, b1, T2, Yo, b2, T3, Y3, B3)7 (20)

The constraints of vectdp(q, t) are shown at Eq. (21). The eight first lines are the kinematistaints, and can be
interpreted graphically as the vector sums indicated in Eigrhe last term of Eq. (21) is the driving constraint, where
¢10 = 60° is the initial crank angle and = 60 RPM is the constant angular velocity.

T — %Ll cos(¢1) —
y1 — 5Ly sin(¢y) —
(1) — 22 + Lg COS(¢2)
Y1 + 2 Lysin(¢1) — y2 + 1 Lo sin(y)
D= 29+ = L2 cos(¢a) — w3 + L3 cos(¢ps) | =0 (21)
Y2 + 5 Lasin(¢2) — ys + 5 L3 sin(¢s)
x5 4 2 L3 cos(¢s) —
Y3 + 2 Ly sin(pz) —
1 — P10 — wi

Differentiating vector®(q, t) with respect to time and tgq we have Eq. (22) and the Jacobian matrix Eq. (23),
respectively.

xr1 + L1 COS (bl

@t = [05 07 05 07 07 05 07 05 7W]T (22)



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering

Copyright (©) 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil
(1 0 iLisin(¢;) 0 0 0 0 0 0 i
0 1 f%Llcos((bl) 0 0 0 0 0 0
1 0 —iLysin(¢1) —1 0 —3Losin(¢2) 0 0 0
0 1 3$Licos(¢1) O —1 1Ljcos(¢e) 0 0 0

®,=|0 0 0 1 0 —1Lpsin(¢2) —1 0 —3Lzsin(¢s) (23)

0 0 0 0 1 iLycos(pz) 0O —1 3Lzcos(ds)
0 0 0 0 0 0 1 0 —iLssin(¢s)
0 0 0 0 0 0 0 1  iLjcos(¢s)
[0 0 1 0 0 0 0 0 0 |

Once these terms are defined, it is possible to calcylatéh Eq. (12).

—5L1cos(¢1) ¢F

3 (24)

5 cos(¢3) 3
3 sin(¢3) 3
0

L
L

1
2
1
2

Finally, M is a[9 x 9] diagonal matrix an@Q“ is the generalized force vector whose non-zero elementh@reeights
of the bars, as presented in Egs. (25) and (26), respectively

M = dianl, mi, Jl, ma, M2, JQ, ms, ms, Jg) (25)
QA = [07 —m1g, 07 0) —mag, 07 0) —masg, O]T (26)

With this information, after performing the kinematic aysi, the only unknown in Eq. (13) i& and the inverse
dynamics of the regularly actuated case can be calculathdBgs. (14a) and (14b). This result is shown in Fig. 3(a) and
represent the last elementbfcalculated for all positions fromy;, = 60° to ¢ = 420°.

For the redundantly actuated case, we consider two actuatgoints A and B, three actuators at joints A, B and C
and four actuators at all joints. The explicit form of Transsion matrices for the two, three and four actuators case ar
presented in Eq. (27). As the directions of actuatiaincide with some elements qf the non-zero elements @f,,

Ts andTy are simplyl and—1 and represent pairs of action-reaction.

0 0 0O 0 0 0 O 0 0 0 O
0 0 0O 0 0 0 O 0 0 0 O
0 -1 0 0 0 -1 0 O 0 -1 0 ©0
0 0 00 0o 0 0 O 0 0 0 O
To=|0 0 0 0| Tsg=|0 0 0 0| Tg=|(0 0 0 O (27)
0 1 00 0 1 -1 0 0 1 -1 0
0 0 00 0 0 0 O 0 0 0 O
0 0 00 0o 0 0 0 0 0 0 O
|0 0 0 0 | 0 0 1 0| |0 0 1 1|
The form of vectoX; from Eqg. (18), where = {2, 3,4} represents the number of actuation, is as follows:

Xi:[)\l,...,)\977’L17_._,TL4]T (28)
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4. RESULTS AND DISCUSSION

Applying the methodology described above to the four-bachmaism with 1, 2, 3 and 4 actuators, the torque curves
shown in Fig. 3 (from a to d) are obtained. In Fig. 3(a), theterfor the one actuator case is shown for both solutions,
with Eq. (14) and Eq. (19). It can be observed that both cuave®qual, as should be expected. Comparing Figs. 3(b) to
3(d) with Fig. 3(a), the smaller peak torque was still thaaaied with one single actuator (Table 1). The torques shown
in Fig. 1 were re-introduced in the model of the mechanisnd, the forward dynamical simulation produced the same
kinematics used to generate the inverse dynamics solusibra( 2007).
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Figure 3. Comparison of torques calculated via inverse ohyosanalysis of four-bar mechanism actuated from 1 to 4
actuators.

Table 1. Maximum and minimum torque actuators for a compigtte of the four-bar mechanism. Values expressed in

Nm.
ny no ns Ty
max | mn|{ max | mn| max | mn | max | min
1 actuator 203 | -232 - - - - - -
2 actuators | 431 | -78 | 289 | -173 - - - -
3actuators | 342 | -131| 288 | -174 | 257 | -108 - -
4 actuators | 156 | -73 77| -90 49 | -37 | 249 -105

Table 1 shows that the inclusion of actuation redundancydegh increase of the peak torques. This effect can be
attributed to a sort of "competition" among the actuators.ti@e other hand, this result may be related to an increase of
the stiffness of the mechanism, what may be advantageousie spplications. The smaller peak torque, among the
redundant cases, was observed when the mechanism is dyifeartactuators (Fig. 3(d)).

5. CONCLUSIONS

In Silva (2007) we have shown that it is possible to dradigalduce the peak torque in the redundant actuation cases,
by using an optimal control formulation. However, the oglraontrol numerical problem is much harder to solve, and
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could not be implemented in real time applications. Thegme=d DAE formulation actually provides an optimal solatio
but the entire vectaK is minimized, including both torques and Lagrange Mulépdi)\, i. e., internal mechanism forces
that does not produce work.

Therefore, in the specific mechanism studied, it can be cded that, by using the DAE approach (namely, using
the T matrix from Valasek’s method) to formulate the redundaméise dynamics problem, a solution is found without
special numerical difficulties but solving a pseudo-inearstrix.
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