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Abstract. This paper presents a method for estimating joint torques in closed-chain mechanisms with a prescribed kine-
matics and redundant actuation, i.e., with more actuators than degrees of freedom. The dynamics of the multibody system
is described by a set of Differential Algebraic Equations (DAE). Inverse dynamics of the system does not have an unique
solution, since there are more unknowns (actuator torques) than equations. This problem is traditionally treated by using
the Moore Penrose pseudo-inverse matrix. Here, an alternative formulation based on a variation of Valasek’s Transmis-
sion Matrix approach is proposed. A four bar mechanism, with a crank rotating at constant velocity, was analyzed to
serve as benchmark. In addition, the regular case with one torque actuator is solved and compared to two, three and four
actuators case.
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1. INTRODUCTION

Parallel manipulators with actuator redundancy have been studied in the last few years by several authors. These
mechanisms are characterized by closed kinematic chains with more actuators than degrees of freedom. This configuration
offers several advantages over their serial counterparts when used in industrial robots and machine tools, since: havehigher
mechanical stiffness (Miller, 2001), higher trajectory and positioning accuracy (Nakamura and Ghodoussi, 1989), higher
load capacity (Dasgupta and Mruthyunjaya, 1998) and smaller mobile mass (Miller, 2001). The existence of kinematical
singularities is a key problem in the analysis of closed chain mechanisms. It becomes critical when a mechanism reaches
the boundaries of the space. According to Cheng et al. (2003), when a parallel manipulator moves towards a singular
configuration, its stiffness and accuracy properties quickly deteriorates.

Liu et al. (2001) studied the undesired effects of singularity over parallel manipulators. To solve this problem, they
suggested the introduction of three types of redundancy: (i) kinematic redundancy, where the number of manipulator
Degrees of Freedom (DOF) is greater than end-effector’s; (ii) over constraining, i.e., increase the number of closed
kinematic chains and (iii) over actuation, when the number of actuators is greater than DOFs. This opinion is supported
by Cheng et al. (2003), who agree that redundant actuation provides effective means for eliminating singularities of
parallel manipulators, thereby improving its performance. Valasek et al. (2004) argues that Parallel Kinematic Machines
(PKM) have advantages over their serial counterparts because: (i) machine tool frame loading by bending is replaced
by tension/compression, (ii) large moving masses are reduced and (iii) backslashes and inaccuracies in serial kinematic
chains are reduced. However, when PKM are exactly actuated (i.e, the number of actuators is equal to the number of end-
effector DOFs), they suffer of limited workspace, have non-uniform mechanical properties and problems with accuracy
and calibration. The principle of redundant actuation applied to PKMs can solve all this problems as was shown by
Valasek et al. (2005) with the development ofTrijoint 900H machining center .

In addition, redundant actuation often arises in biomechanical models. It is present in musculo-skeletal systems: (i)
when individual muscles are considered as single actuatorsand (ii) when the net effect of all muscles that crosses a joint
is considered a single torque actuator. An example of the first case, as presented by Hatze (2000), considers 42 DOFs,
with 240 musculo-skeletal actuators for a three dimensional human body model. In the second case, the simplifying
assumption of torque actuators may turn the model redundantor not.

While in human posture models Menegaldo and Weber (1997), Barin (1989), Cahouet et al. (2002) the number of
actuators is equal to the DOFs, in pedaling (Hull et al., 1985), rowing (Lee et al., 2005) and double support phase of gait
(Pandy and Berme, 1988) – where a closed kinematic chain is present – the number of actuators outcomes the number
of degrees of freedom. In short, redundancy in biomechanicsis a challenging problem because, as Hatze (2000) says,
inverse dynamics does not have unique solution. Therefore,different control histories can reproduce the same (specified)
kinematics. In particular, some relevant questions may be addressed in this context. For instance, how actuator torques
or forces are distributed along the additional redundant actuators? If the number of actuators is changed, is it possible to
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choose an specific set with smaller maximum torque outputs, which are, therefore, more lightweight?
In this paper, a four bar mechanism with one, two, three and four torque actuators is studied, as decribed in Fig. 1.

The inverse dynamics of the non-redundant mechanism is numerically calculated with the method presented by Haug
(1989). Using the framework presented by Haug, a modification in the generalized forces term, based on a variation of
Valasek’s Transmission Matrix (Valasek et al. 2005), is introduced to account for additional torques. The resultant system
of equations is solved via pseudo-inverse approach.

Figure 1. Diagram of four bar mechanism showing reference frames, Cartesian coordinates and actuator positions.

2. THEORETICAL FRAMEWORK

2.1 Kinematic Analysis

The first step in kinematic analysis is to write the expressions of constraint vectorΦ(q, t). Constraint vector is
composed of thekinematic constraints ΦK(q, t) and driving constraints ΦD(q, t). Kinematic constraints represents
physical connections between bodies, which are functions system coordinates, but do not depend explicitly on time. They
are be graphically expressed in Fig. 2.

In addition to kinematic constraints, the motion of the mechanism is described by driving constraints, which are the
time dependent equations that prescribes the active coordinates. Kinematic and driving constraints can be assembled
together as in Eq. (1). This equation can be solved with a Newton-Raphson algorithm.

Φ(q, t) =

[

ΦK(q, t)
ΦD(q, t)

]

= [0] (1)

Differentiating Eq. (1) once we have the expression shown atEq. (2), whereΦq is the Jacobian matrix andΦt is the
derivative ofΦ with respect to time. IfΦq is non-singular, Eq. (2) can be solved for velocitiesq̇.

Φqq̇ + Φt = 0 (2)

Differentiating Eq. (1) twice, Eq. (3) is obtained, where(Φq · q̇)q is the same as∂(Φq · q̇)/∂q. The termΦtq is a
matrix whose elements are the time derivatives of Jacobian matrix andΦtt is the second time derivative of Eq. (1). Again,
if Φq is non-singular it is possible to solve Eq. (3) for accelerationsq̈.

(Φq · q̇)qq̇ + 2Φtqq̇ + Φqq̈ + Φtt = 0 (3)
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(a) Absolute distance constraint to determine the posi-
tion of point A.

(b) Revolute joint constraint at point B

(c) Revolute joint constraint at point C (d) Absolute distance constraint to determine the posi-
tion of point D

Figure 2. Graphical representation of constraint equations present at vectorΦK .

2.2 Dynamic Analysis

After the accelerations of each coordinate are found in the kinematic analysis, the variational equation of motion of a
system withnb bodies, can be written follows. It is derived from the principle of virtual work.

nb
∑

i=1

δqi [Miq̈i − Qi] = 0 (4)

In Eq. (4),δqi = [δxi, δyi, δφi]
T are the virtual displacements, andq̈i = [ẍi, ÿi, φ̈i]

T the accelerations of the Cartesian
coordinates associated to the bodyi. Mi = diag(mi, mi, Ji) is a diagonal mass matrix of bodyi, andQi is a three
element vector with all forces and torques (internal and external) that act over bodyi in x, y eφ, respectively. Finally,nb
is the number of bodies in the system. Defining composite vectors as:

q = [qT

1 ,qT

2 , . . . ,qT

nb]
T (5)

M = diag(M1,M2, . . . ,Mnb) (6)

Q = [QT

1 ,QT

2 , . . . ,QT

nb]
T (7)

it is possible to re-write the variational form of system equations of movement in a compact form:

δqT [Mq̈− Q] = 0 (8)

At this point it is convenient to split the vectorQ = QC + QA into 2 other vectors, one with internal (constraint) and
the other with external (active) forces.

δqT
[

Mq̈ − QC − QA
]

= 0 (9)

If q is a vector with3nb Cartesian coordinates and the system hasn degrees of freedom, it is necessary to introduce
3nb−n kinematic constraints with its associated Lagrange multipliers. The theorem of Lagrange multipliers Haug (1989)
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states that ifδqTQC = 0 for all δq such thatΦqδq = 0, then there exists a vectorλ, calledLagrange multiplier, such
thatδqTQC + δqT Φq

T λ = 0. The fact thatδqT QC = 0 is a consequence of the workless condition. If forcesQC do
no work, thus the admissible displacementsδq are perpendicular toQC . A complete proof of the theorem of Lagrange
multipliers can be found in Haug (1992). Proceeding this way,

QC + Φq
T λ = 0 (10)

Substituting Eq. (10) into Eq. (9), and rearranging the terms we obtain the Differential Algebraic Equation form of a
multibody system equations of motion .

Mq̈ + Φq
T λ = QA (11a)

Φ(q, t) = 0 (11b)

Equations (11a) and (11b) are said to beDifferential Algebraic Equations (DAE) of index 3. DAE is system of
differential equations that describes the behavior of a dynamical system which is coupled to a set of algebraic equations
that should be always satisfied.A DAE can be written as an ODE differentiating Eq. (11a) twice. In doing so, it is
convenient to isolate the termΦqq̈ in Eq.(3):

γ ≡ −(Φq · q̇)q · q̇ − 2Φtqq̇ − Φtt (12)

Thus, Eqs. (11a) and (11b) can be written in an unified form:

[

M Φq
T

Φq 0

] [

q̈

λ

]

=

[

QA

γ

]

(13)

2.3 Inverse dynamics of a regularly actuated mechanism

Rewriting Eq. (13) we have

Mq̈ + Φq
T λ = QA (14a)

Φqq̈ = γ (14b)

It can be shown that Lagrange multipliers uniquely determines the constraint forces and torques that act in the system.
Thus, inverse dynamics can be calculated solving sequentially Eqs. (12) and (15b). In the example studied the last term
of vectorλ will be the desired actuator torque at joint A (Fig. 1), because the driving constraint was inserted at the last
element of vectorΦ (see Eq. (21)).

q̈ = Φq
−1γ (15a)

λ = (Φq
T )−1(QA − Mq̈) (15b)

2.4 Inverse dynamics of a redundantly actuated mechanism

Valasek and Sika (2001) presents a modified version of Eq. (14a), introducing the termTn at the right side of Eq. (14a),
whereT is theTransmission matrix andn is vector of external actuators. The Transmission matrix isdefined asT =
∂s/∂qT , wheres is the vector of coordinates over which the actuators directly act.

Mq̈ + Φq
T λ = QA + Tn (16)

Equation (16) can be re-written in the form of Eq. (17) in order to put all unknown quantities (λ andn) in the same
column vector.

[

Φq
T ,−T

]

[

λ

n

]

= QA − Mq̈ (17)
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Proceeding this way one can define the matrix[P] = [Φq
T ,−T] by juxtaposing matrices[Φq]T and[−T]. Addition-

ally, defining[G] = QA−Mq̈ it is possible to find internal forces and redundant actuatedtorques solving Eq. (18) where

P+1 = PT
(

P ·PT
)

−1
is the Moore-Penrose pseudo inverse matrix (Falco, 2005).

X = P+G (18)

It should be noted thatP has more columns than rows and therefore it cannot be solved by conventional methods. An
important property of pseudo inverse matrix is that a solution of the system of equations (18) is equivalent to the solution
of optimization problem defined at Eqs. (19a) and (19b). Therefore, the solution obtained is optimal, in the sense of the
least squares of vectorX.

minimize: g ≡ ||X||22 (19a)

subject to: P ·X = G (19b)

3. COMPUTATIONAL IMPLEMENTATION

The reference frames of four-bar mechanism are depicted in Fig. 1. The lengths of the bars areL1 = 0, 5 m,L2 = 0, 9
m, L3 = 0, 7 m eL4 = 1, 0 m and their massesm1 = 6, 590 kg, m2 = 11, 550 kg andm3 = 9, 070 kg. The center of
mass are in the middle of all bars and moment of inertia were calculated byJ = 1

12
mL2. The crank is assumed to turn

with a constant velocity (ω) of 60 rpm around point A. The study will comprise a complete rotation of the crank which
takes 1 second to be performed. Thus, the vector of coordinatesq is defined bellow.

q = [x1, y1, φ1, x2, y2, φ2, x3, y3, φ3]
T (20)

The constraints of vectorΦ(q, t) are shown at Eq. (21). The eight first lines are the kinematic constraints, and can be
interpreted graphically as the vector sums indicated in Fig. 2. The last term of Eq. (21) is the driving constraint, where
φ1◦ = 60◦ is the initial crank angle andω = 60 RPM is the constant angular velocity.
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Differentiating vectorΦ(q, t) with respect to time and toq we have Eq. (22) and the Jacobian matrix Eq. (23),
respectively.

Φt = [0, 0, 0, 0, 0, 0, 0, 0, −ω]
T (22)
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Φq =
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Once these terms are defined, it is possible to calculateγ with Eq. (12).
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Finally,M is a[9×9] diagonal matrix andQA is the generalized force vector whose non-zero elements arethe weights
of the bars, as presented in Eqs. (25) and (26), respectively.

M = diag(m1, m1, J1, m2, m2, J2, m3, m3, J3) (25)

QA = [0, −m1g, 0, 0, −m2g, 0, 0, −m3g, 0]T (26)

With this information, after performing the kinematic analysis, the only unknown in Eq. (13) isλ and the inverse
dynamics of the regularly actuated case can be calculated with Eqs. (14a) and (14b). This result is shown in Fig. 3(a) and
represent the last element ofλ calculated for all positions fromφ1 = 60◦ to φ1 = 420◦.

For the redundantly actuated case, we consider two actuators at joints A and B, three actuators at joints A, B and C
and four actuators at all joints. The explicit form of Transmission matrices for the two, three and four actuators case are
presented in Eq. (27). As the directions of actuations coincide with some elements ofq, the non-zero elements ofT2,
T3 andT4 are simply1 and−1 and represent pairs of action-reaction.
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The form of vectorXi from Eq. (18), wherei = {2, 3, 4} represents the number of actuation, is as follows:

Xi = [λ1, . . . , λ9, n1, . . . , n4 ]
T (28)
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4. RESULTS AND DISCUSSION

Applying the methodology described above to the four-bar mechanism with 1, 2, 3 and 4 actuators, the torque curves
shown in Fig. 3 (from a to d) are obtained. In Fig. 3(a), the torque for the one actuator case is shown for both solutions,
with Eq. (14) and Eq. (19). It can be observed that both curvesare equal, as should be expected. Comparing Figs. 3(b) to
3(d) with Fig. 3(a), the smaller peak torque was still that obtained with one single actuator (Table 1). The torques shown
in Fig. 1 were re-introduced in the model of the mechanism, and the forward dynamical simulation produced the same
kinematics used to generate the inverse dynamics solution (Silva, 2007).
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Figure 3. Comparison of torques calculated via inverse dynamics analysis of four-bar mechanism actuated from 1 to 4
actuators.

Table 1. Maximum and minimum torque actuators for a completecycle of the four-bar mechanism. Values expressed in
Nm.

n1 n2 n3 n4

max min max min max min max min

1 actuator 203 -232 - - - - - -
2 actuators 431 -78 289 -173 - - - -
3 actuators 342 -131 288 -174 257 -108 - -
4 actuators 156 -73 77 -90 49 -37 249 -105

Table 1 shows that the inclusion of actuation redundancy ledto an increase of the peak torques. This effect can be
attributed to a sort of "competition" among the actuators. On the other hand, this result may be related to an increase of
the stiffness of the mechanism, what may be advantageous in some applications. The smaller peak torque, among the
redundant cases, was observed when the mechanism is driven by four actuators (Fig. 3(d)).

5. CONCLUSIONS

In Silva (2007) we have shown that it is possible to drastically reduce the peak torque in the redundant actuation cases,
by using an optimal control formulation. However, the optimal control numerical problem is much harder to solve, and
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could not be implemented in real time applications. The presented DAE formulation actually provides an optimal solution,
but the entire vectorX is minimized, including both torques and Lagrange Multipliersλ, i. e., internal mechanism forces
that does not produce work.

Therefore, in the specific mechanism studied, it can be concluded that, by using the DAE approach (namely, using
theT matrix from Valasek’s method) to formulate the redundant inverse dynamics problem, a solution is found without
special numerical difficulties but solving a pseudo-inverse matrix.
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