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Abstract. The biomechanic model of a human musculoskeletal system and the simulation of behavior in movement can 

be applyed in several areas, such as sports, engineering and medicine. The purpose of this work is obtain a dynamic 

model that represents a musculoskeletal system of a leg. The description of kinematic and dynamic links movements is 

based on Newton-Euler and Euler-Lagrange formulation. The resulting movements and forces are produced by sets of 

actuators muscle-tendinideous. These dynamic models are non-linear with multiples input and output and many 

degrees of freedom. This results in many difficulties in the determination of parameters like forces and moments. The 

model must be generic enough for accept several muscle models and control techniques. In this paper, it was used a 

control based on optimal theory control. A geometric model for simulations of postural control is obtained with 

Matlab/Simulink software.   
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1. INTRODUCTION  

 

Researchers on robotic enthusiastically dreamed with smart machines that realize movements and tasks that a 

human can realize, with many expectation about modern control. Therefore, progresses in robotic control did not 

correspond to the expectation and the biggest difficulties were about the understanding of human motion in day-tasks. 

Human beings can manipulate objects and realize movements and complex tasks with facility and ability, through a 

biological evolution and trainee. A lot of researchers from several areas are involving in dynamic of human body. 

While a comprehensive theory of human movement is still far away, it is true that great progress has been made in the 

last few decades, with important contributions coming from researchers engaged in robotics. Mathematical models of 

biological systems are a field with the biggest increase in scientific development in the present-day. Although all 

techniques in simulation and mathematical models, the generalized application in musculoskeletal system is very 

complex (Thelen, 2006). The biomechanic model of musculoskeletal system and the simulation of the system behavior 

in motion can contribute to understanding the relationship among musculoskeletal properties and movement and 

articulation forces with application on medicine, diseases (Anderson et al. 2001, Pandy,1995) and sports (Thelen, 

2005). 

      In this work, we use a simpler biomechanical planar models with dynamic torque actuators of posture. The 

availability this model may lead to new applications of such devices. One of  them is the reproduction of human 

posture, previously acquired in  study laboratories, since a  correspondence between the real postural problem  and the 

mathematical model  can be established. Not only normal postural equilibrium should be reproduced, but also 

pathological patterns. This can increase the comprehension of the phenomenon by the physician and the chance of 

success of the therapy. 

      In the context of optimal control theory applied to the class of dynamical systems we are dealing with, the 

biomechanical model defines a topology where the solution is a set of control signals, is valid at the same time that an 

optimization procedure is performed. The advantage of this approach is the possibility of finding open-loop muscle 

excitation control signals, as well as muscle forces and kinematical trajectories, without previous measurement of the 

motion (Kuo, 1995, Menegaldo et al. 2003). 

 

2. EQUATION OF  MOTION  
 

In order to surpass the numerical difficulties associated with the optimal control solution, simpler biomechanical 

planar models with dynamic torque actuators of posture were adopted (Gruber, 1998). The human system include four 

rigid segments representing the foot, the leg, the thigh and the upper part of the body, which are linked by three 

articulations, ankle, knee and hip joints modeled as frictionless hinges as shown in Figure 1. 
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Figure 1. Simpler biomechanical planar model. 

 

     In Figure 1, the vector of generalized variables is ],,[ 321 θθθ=q   that  represents articulations angle and 1a , 2a  

and 3a  the leg,  thigh   and  pelvis  length, respectively. 

 

2.1. Position and Orientation of a Rigid Body 

 

     An human  link, in this case, a leg, can be seen, in a mechanic point of view, like a kinematic open chain, formed by 

rigid bodies connected by rotation joints (Yang, 1990). An end is connected to the base and the other one to the 

terminal element. The structure movement is realized by a composition of elementary movements for each link, with 

respect to the preceding. In order to simulate a movement like walking or pedaling it is necessary a description of 

position and orientation of joints and links. It is also necessary a derivation of kinematic equations of leg, describing the 

position and orientation of the terminal element, as function of joint variables with respect to a reference coordinates 

system. These equations can be obtained through Denavit-Hartenberg convention (Siciliano and Valavanis, 1998). We 

express the transformation of coordinates that relate the system ),( iii yxO  with the system ),( 111 −−− iii yxO , through 

the following steps: 

 
 

 

 
 

 

 

 
 

 

 

 
 

 

 

Figure 2. Different coordinated systems. 
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1. It starts from coordinated system 1−iO . 

 

2. It does the rotation iθ  around of iz  axis. This operation take to the system 1−′iO , described by homogeneous rotation 

transformation matrix. 
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3. It dislocates the coordinated system 1−′iO  in ia , through 1−′ix  axis. This operation take to the system iO , described 

by homogeneous dislocation transformation matrix. 
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      Finally, it is obtained the transformation of coordinates that relate the system ),( iii yxO  with the system 

),( 111 −−− iii yxO   
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     For successions of several transformations, as a musculoskeletal system, the position and the orientation of terminal 

element is represented by total matrix transformation 
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2.2. Geometric Jacobian 

 

     Once knew the direct kinematic equations, we obtain the relationship among  velocity of joints and linear and 

angular velocities of links, through the geometric jacobian (Bottega,  2005). These relations are necessaries for the 

derivation of movement equation of the musculoskeletal model as a whole. 

 

     The linear and  angular velocity of a point p  of the terminal element are expressed, like free vector in function of 

velocity of the joints θ&& =q , with relations as 
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which can be written in the following form 
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where the transformation matrix nJ ×6  is called geometric jacobian. The Equation (4) can be written in vectors  
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where iipi qqJ &)(  represents the contribution of joint i to the linear velocity of the terminal link, while iii qqJ &)(0  

represents the contribution of this joint to the angular velocity  of the terminal link. 

   
2.3. Lagrange's Formulation 
 

     In order to obtain a set of differential equations of motion to adequately describe the dynamics of the 

musculoskeletal system, the Lagrange's approach can be used (Cannon 1982). A system with n  generalized coordinates 

iiq θ=  must satisfy n  differential equations of the form 
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where 
if

ξ  are the generalized forces with respect to the generalized coordinates iq . L  is the so called Lagrangian 

which is given by 

 

               UL −Τ= ,                                                                                                                         (9) 

 

where T  represents the kinetic energy of the system and U the potential energy. 

 
     The Equation 8 define the  relations among the generalized forces applied on the system and the joints velocity and 

acceleration.  

 

2.4. Kinetic Energy 

 

     The kinetic energy of link i can be expressed as 
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is the generalized inertia matrix. 

 

2.5. Potential Energy 

 

      The potential energy is given by 

           ( )∑−=
ii l

T
l pgmU 0                                                                                                                                               (12) 

where 0g  is the gravity vector expressed in the base frame. 

 

2.6. Equations of motion  
 

     By taking Equation  and Equation , into account, the Lagrangian of Eq. (6) can be written as 
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where )(qh represents a vector with centripetal, Coriolis and gravitational forces given by 
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Finally, the equations of motion Eq. (13) for our system, which are modeled as a set of coupled rigid bodies, can be 

written in matrix form 
 

               uqgqqqCqqB =++ )(),()( &&&&  ,                                                                                 (15) 

 

where )(qB  is the mass matrix, )(qg  is the gravity vector, u   is the 1×n  vector of applied joint torques and qqqC &&),(  

is the Coriolis matrix. 

 

     With an appropriate coordinated system, the Jacobian  of linear velocity in Eq. (7) is given by 
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where c(12...n) and s(12...n)  indicate, respectively, cossino and sino of ( nθθθ +++ ...21 ). 

 

     The Jacobians of angular velocity of baricenters  in Eq. (7) are 
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3. CONTROL MODEL  

 

 

      Although the theory of optimal control is pretty well worked out in literature, there seems to be less information 

about implementing optimal controller on systems with many degrees of freedom and many uncertain parameters (Kuo 

1995). 

 

     The dynamic system defined by Eq. (15) can be parameterized in first order equations and written in the state-

dependent coefficient (SDC) form    

 

            
( ) ( )
( )xxSy

uxBxxAx

=

+=&
,                                                   (19) 

 

where [ ]Tθθx 321321 θθθθ &&&=  is a state time dependent, 6ℜ∈x&  is the vector of the first order time derivates of 

the states, 3ℜ∈∈Uu   is the control vector, U is the control constraint set and S(x) is the output matrix. This system 

represents the constrains from the nonlinear regulator problem, together with ( ) ( ) 0,00 =∞= xxtx , respectively the 

initial and final conditions. 

     The coefficient dependent matrices are given by 
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where 66 x
A ℜ∈  and 36 x

B ℜ∈ . The state x and the control u is given by  ( ) ( ) ( ) ( )xBxbxxAxf == ,  and ( ) ( )xxSxd =  

(Mracek and Cloutier, 1998). It is assumed that f(0)=0, which imply that the origin is an equilibrium point. 
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       A state feedback rather that output feedback is adopted to enhance the control performance. The non-quadratic cost 

function for the regulator problem is given by 
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where Q(x) is semi-positive-definite matrix and R(x) positive definite. There are weighting matrices on the outputs and 

control inputs, respectively.  For a pointwise linear fashion there matrices are assumed with constant coefficients.  

     Assuming full state feedback, the control law is given by 

 

           ( ) ( ) ( )xxPxBxRu
T1−−=                                                            (22)  

 

     The estate-dependent Riccati equation to obtain P(x), is given by 
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      It is show in Mracek and Cloutier (1998)  that 

 

1) In the neighborhood Ω  about the origin the SDRE method guarantees a closed-loop solution, local asymptotic 

stability.  

2) In the scalar case, the SDRE method reaches the optimal solution of the feedback regulator problem 

performance index (20), even when Q and R are functions of x. 

3) In general multivariable case, the SDRE nonlinear feedback controller satisfy the first necessary condition for 

optimality, 0Hu =  (H is the Hamiltonian from the problem (19)-(21), while the second necessary condition 

for optimality, xHλ −=& , is asymptotically satisfied at a quadratic rate as x goes to zero. 

4) The system (19) is pointwise controllable and observable, for a region in neighborhood Ω  about the origin.  

For controllability this mean [ ]
5,...,1=n

n BABM  from the static problem BuAxx +=& , in this neighborhood. 

SDRE method considers a solution for this static pointwise problem, for small time interval. 

 

     The SDRE technique to obtain a suboptimal solution for this problem has the following procedure (Mracek and 

Cloutier, 1998). 

 

Step 1. Define the space-state model of the manipulator with the state-dependent coefficient form as in eq. (20). 

Step 2. Measure the state of the system x(t), i.e. define x(0)=x0 , and choose the coefficients of weight matrices Q and R. 

Step 3.  Solve the Riccati equation (23) for the state x(t), considering pointwise static solutions, i.e. solve  

01 =+−+ −
QPBPBRPAPA

TT  for each step.       

Step 4. Calculate the input signal from  eq. (22) 

Step 5. Integer the system  eq.(19) and update the state of the system x(t) with this results. Go to step 3. 

 

 

 

 

4. DYNAMIC MODEL 

 

 

    For the purpose of design, simulation, and control the dynamic equations of  the musculoskeletal system  can be 

represented in the state-space form. A state vector is defined as ],[ zzz &=  defined as the difference between the 

regulated iθ output and the value of the set-point idθ .  
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Therefore, the model in the Eq. (15) can be written as 
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After inverting matrix B  in Equation  15 and performing some algebraic manipulations. The state-dependent system 

matrices are 
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Solve the state-dependent Riccati equation, using the LQR function in MATLAB, to obtain P(t) and construct the non-

linear feedback controller 
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minimizing the functional 
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where the matrices Q and R are chosen as Q = diag(50, ..., 50) and R = diag(1, ..., 1). 

 

5. RESULTS 

 

      We consider a simplified model presented  in Figure 1 that uses torque as variable of input control, where the 

mathematical model is given by Eq. (25). Let  1m , 2m   and 3m   be the masses, 1l , 2l  and 3l  the baricenter length, 

1I ,  2I  and 3I  are the inertial moment respectively and g  is the gravity acceleration.. 

 

     This model uses the following  anthropometric and geometric parameters of musculoskeletal system (Menegaldo, 

2003), 

 

24.01 =l , 27.02 =l  , 1.03 =l ,  

4.01 =a , 4.02 =a  2.03 =a ,  

0.141 =m , 7.62 =m , 5.03 =m , 

 2640.01 =I ,  1295.02 =I , 063.03 =I , 

8.9=g . 

 

     The movement of musculoskeletal system was simulated on PC, using MatLab/Simulink with time period 

mst   1=∆ , numerical method for differential equation  solution by Runge Kutta, with 1 second period. In this case, we 

obtained the following results. 

     In order to check the performance of the controllers presented, using a path that represents an initial condition of the 

human body crouching down to erect condition to simulate a control of human posture (Pandy, 2001), where the initial 

conditions represent angles of approximately 57 degrees to the hip joint 3θ , approximately -57 degrees to the knee joint 

2θ  and about 40 degrees to the ankle joint 1θ . In Figure 3 is shown by the trajectory angle of the joints, there is a 

convergence to zero of the angle of joints, representing the upright position of the model.  
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Figure 3. Tracking trajectory for angle of articulations to musculoskeletal system. 
 

In Figure 4 there is a convergence to zero of the speed trajectories. The torques applied to joints, limited by the gain 

matrix of control, are shown in Figure 5. 

 

Figure 4. Tracking trajectory for the speed angle of articulations to musculoskeletal system. 

 

 

Figure 5. The torques applied to joints. 
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This simulation shows the good performance of the adaptive control system presented in both the stationary and the 

transient state. 
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7. CONCLUSIONS 

 

The biomechanic model of a human musculoskeletal system and the simulation of his behavior in movement can be 

applied in several areas, such as sports, engineering and medicine. The objective of this work was obtain a dynamic 

model that represents the musculoskeletal system of a leg. The description of kinematic and dynamic links movements 

was based on Newton-Euler and Euler-Lagrange formulation. In this paper, it was used a control based on optimal 

theory control. A geometric model for simulations was obtained with Matlab/Simulink software. We presented the 

desired and the tracking trajectories for angle of articulations to musculoskeletal system. The trajectory error remained 

next to zero. The simulation showed the good performance of adaptative control system presented here. 

 

 

 

8.  REFERENCES 

 

Anderson, F. C. and Pandy,  M. G., 2001, “Dynamic Optimization of Human Walking”, Journal of    Biomechanical 

Engineering, Vol. 5, pp. 381-390. 

Bottega, V., 2005, “Controle e Otimização Estrutural de Manipuladores Robóticos com  Elementos Flexíveis usando 

Atuadores Piezelétricos”, Doctor Teses, UFRGS/PROMEC, Porto Alegre. 

Cannon, S. C.  and Zahalak, G.I., 1982, “The Mechanical Behavior of Active Human Skeletal Muscles in Small 

Oscillations”, Journal of Biomechanics,  Vol.15, pp. 111-121. 

Gruber, K., Ruder, H., Denoth, J. and Schneider, K., 1998, “A comparative study of impact dynamics: wobbling mass 

model versus rigid body models”, Journal of Biomechanics, no. 31, pp. 439-444. 

Kuo, A., 1995,  “An Optimal Control Model for Analyzing Human Postural Balance”, IEEE Transactions on 

Biomedical Engineering, Vol. 42, no. 1. 

Menegaldo, L. L., Fleury, A. T. and Weber, H. I.,  2003, “Biomechanical modeling and optimal control of human 

posture”. Journal of Biomechanics, no. 36, pp.1701-1712. 

Mracek, P. C. and Cloutier, J. R., 1998,  “Control designs for the nonlinear benchmark problem via the state-dependent 

Riccati equation method”. International Journal of robust and nonlinear control , 8,  401-433. 

Pandy, M. G.,  Garner, B. A. and Anderson, F. C., 1995, “Optimal Control of Non-Ballist Muscular Movements: A 

Constraint-Based Performance Criterion for Rising From a Chair”, ASME Jounal of Biomechanical Engineering, 

Vol. 117, pp. 15-26. 

Pandy, M.G., 2001, “Computer modeling and simulation of human movement”, Annual Reviews in Biomedical 

Engineering, Vol. 3, pp. 245–273. 

Rafikov, M., Balthazar, J.M., 2007 , “On control and synchronization in chaotic and hyperchaotic systems via linear 

feedback  control”, Communications in Nonlinear Science and Numerical Simulation, 

doi:10.1016/j.cnsns.2006.12.011 

Siciliano, B. and Valavanis, K. P., 1998, “Control Problems in Robotics and Automation”, Springer-Verlag, London. 

Thelen, D. G., Chumanov, E. S., Best, T. M., Swanson, S. C. and Heiderscheit, B. C., 2005, “Simulation of Biceps 

Femoris Musculotendon Mechanics during the Swing Phase of Sprinting”, Med. Sci. Sports Exerc., Vol. 37, No. 11, 

pp. 1931-1938. 

Thelen, D.G.  and Anderson, F.C., 2006, “Using computed muscle control to generate forward dynamic simulations of 

human walking from experimental data”, Journal of Biomechanics, Vol. 39, pp. 1107-1115. 

 

 

 

9. RESPONSIBILITY NOTICE 

 

The authors are the only responsible for the printed material included in this paper. 

 


