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Abstract. In this paper, the characteristic values and the compatibility conditions (resulting equations in the propagation
directions) are shown for a one-dimensional multiphase oil, water and gas flow model. Continuity equation for each phase
and a simplified momentum equation without inertia terms (no-presssure-wave -NPW- approximation) for the phases
flowing together are considered. Oil and water phases are considered to have the same velocity and are homogenized.
Slip between the liquid and gas phases are taken into account by using a drift flux model. Mass transfer between the oil
and gas phases are calculated using the black oil model. It is shown that a mixed hyperbolic-parabolic model is obtained
and that two characteristic finite velocities exist, related to the gas and liquid velocities. A procedure for the numerical
solution of the resulting equations, based on the method of characteristics, is discussed.
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1. INTRODUCTION

Transient simulation of multiphase oil and gas flows in pipes requires a considerable computational effort. There are
many models used in the literature, varying the number of conservation equations and/or the closure laws (Masella et al.,
1998). Among these, it can be cited the two-fluid model (based in a momentum equation for each phase) and the drift flux
model (based on one momentum conservation equation and an algebraic slip relation).

In most of the transients occurred in oil and gas transport, for instance in severe slugging, the response of the system
proves to be relatively slow, showing that pressure waves do not have a strong effect on the initiation and transport of
void waves. In the no-pressure-wave (NPW) model, acoustic waves are ruled out by neglecting inertia terms from the
momentum equation, resulting an algebraic relation for the pressure gradient.

Due to its simplicity, experimental studies on severe slugging were usually realized in air-water systems (Jansen et al.,
1996; Mokhatab, 2007; Taitel et al., 1990; Wordsworth et al., 1998). Although basic mechanisms of severe slugging can
be investigated using air-water systems, there are many limitations when trying to extrapolate these results to petroleum
production systems:

• Pipeline lengths and riser heights in petroleum production systems are much greater (order of kilometers long) than
the values for air-water experimental facilities. The high pressure ratios between the bottom and top of the riser
give rise to important expansion effects in the gas phase, invalidating models based on the assumption of a mean
void fraction.

• Petroleum is a multicomponent system in which both liquid and gas phases coexist at operating conditions (McCain,
1990). Mass transfer between the phases are dependent on pressure and temperature through the PVT curve. With
the high pressure variations in the riser, mass transfer effects cannot be ignored. Besides, the fluid coming from the
reservoir has a water content, so three phases can coexist in the general case.

• Most of the experiments in air-water systems were realized keeping a constant separation pressure as a boundary
condition. A few experiments investigated the effect of a choking valve at the top of the riser. Because of the low
pressures involved, the valve operated in subcritical conditions. In petroleum production systems, a choke valve
operating in critical conditions is located at the top of the riser.

For a model to describe physical phenomena correctly it must be well-posed, this is, the solution must exist, must be
uniquely determined and must depend in a continuous fashion on the initial and boundary conditions (Drew and Passman,
1999). This property is particularly important in multiphase flows, where partial differential equations of hyperbolic
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nature can be found; in this case, well-posedness implies that the characteristic values (eigenvalues or characteristic wave
velocities) must be real.

In this paper a one-dimensional model for multiphase flow (oil, gas and water) is developed and its characteristic
values and compatibility conditions are studied. This model will be used in severe slugging simulations and stability
studies, extending a previous model developed for air-water systems (Baliño et al., 2007; Baliño, 2008) for petroleum
production conditions.

2. MULTIPHASE FLOW MODEL

2.1 Conservation equations

The model considers one-dimensional, isothermal flow. Solubility of gas and vaporization are neglected for water.
Considering continuity equations for the phases oil, gas and water and a mixture momentum equation in which inertia
terms are neglected, we get:

∂

∂t
(ρg α) +

∂jg

∂s
= Γ (1)

∂

∂t
(ρo αo) +

∂jo

∂s
= −Γ (2)

∂

∂t
(ρw αw) +

∂jw

∂s
= 0 (3)

∂P

∂s
= −4 τw

D
+ ρm gs (4)

ρm = ρg α + ρo αo + ρw αw (5)

where D is the pipe diameter, P is pressure, s is the coordinate along the flow direction, t is time, ρm is the density of the
mixture, ρg , ρo and ρw are the densities of the phases (correspondingly gas, oil and water), jg, jo and jw are the superficial
velocities, α, αo and αw are the volume fractions, gs is the gravity component in the s-direction, Γ is the vaporization
source term and τw is the mean shear stress at the pipe wall. The volume fractions are related by:

αo + αw + α = 1 (6)

2.2 Closure laws

In order to close mathematically the problem, some simplifications must be made.

2.2.1 Homogenization of liquid phases

Assuming equal velocities for oil and water, we obtain:

jo = jl
αo

1− α
(7)

jw = jl
αw

1− α
(8)

jl = jo + jw = ul (1− α) (9)

where jl and ul are correspondingly the superficial velocity and the velocity of the liquid (oil plus water) phase.

2.2.2 Shear stress at the wall

The shear stress at the wall is estimated using a homogeneous two-phase model and a correlation (Chen, 1979) for the
Fanning friction factor f , resulting the following relations:

τw =
1
2

fm ρm j |j| (10)
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)
(11)
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(12)

Rem =
ρm D |j|

µm
(13)

µm = µo αo + µw αw + µg α (14)

j = jo + jw + jg (15)

where Rem and µm are correspondingly the Reynolds number and dynamic viscosity of the mixture, µo, µw and µg are
the viscosities of the phases, ε is the pipe roughness and j is the total superficial velocity.

2.2.3 Real gas

Because of the high pressures involved, the constitutive relation for the gas phase is considered as:

ρg =
γg Ma

Λ T

P

Z
(16)

where γg =
Mg

Ma
is the gas specific gravity, Mg and Ma = 28.966 are respectively the molar masses of gas and air, Z is

the gas compressibility factor (dependent on pressure, temperature and gas composition) and Λ = 8.314 m2s−2K−1 is
the gas universal constant.

2.2.4 Drift flux model

The superficial velocities for the liquid and gas phases are determined by using a drift flux model (Zuber and Findlay,
1965):

jg = α (Cd j + Ud) (17)

jl = (1− α Cd) j − α Ud (18)

j = jl + jg (19)

where the parameters Cd and Ud depend on the local geometric and flow conditions (Bendiksen, 1984; Chexal et al.,
1992). In a general form, it will be assumed that Cd = Cd (α, P, j, θ) and Ud = Ud (α, P, j, θ), where θ is the local
inclination angle of the pipe.

2.2.5 Black oil model

The vaporization term can be calculated by using the black oil model (McCain, 1990). According to this approxima-
tion, composition of the hydrocarbons is considered as constant. In this way, many properties corresponding to the phases
at operating conditions can be estimated based on parameters at standard condition and a set of correlations depending on
pressure, temperature and composition, which will be considered as locally and instantaneously valid.

The vaporization term can be expressed as:

Γ = −ρg 0 αo

Bo

(
∂Rs

∂t
+

jo

αo

∂Rs

∂s

)
(20)

where ρg 0 is the gas density at standard condition, Bo is the oil formation volume factor and Rs is the solution gas-oil
ratio. It is worth noting that for Γ > 0 must be αo > 0, while for Γ < 0 must be α > 0.
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The densities of the oil and gas phases ρo, ρg and ρw can be calculated as:

ρo =
ρo 0 + ρg 0 Rs

Bo
(21)

ρg =
ρg 0

Bg
(22)

where ρo 0 is the oil density at standard condition and Bg is the gas formation volume factor. It can be shown that Eq.
(16) reduces to Eq. (22) for constant gas specific gravity.

2.3 Conservation equations in terms of the state variables

The state variables of the multiphase flow model are α, αo, P and j. The conservation equations (1), (2), (3) and (4)
can be expressed in terms of the state variables and their derivatives assuming that Rs, ρg , ρo, ρw depend on pressure and
temperature and that jg = jg(α, P, j, θ):

ρg
∂α

∂t
+

(
α

∂ρg

∂P
+
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Bo
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∂P

)
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∂jg
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+
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+ ρg

∂jg

∂P
+
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∂Rs
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+ρg
∂jg
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∂j
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= 0 (23)
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+
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∂P

∂s
= −4 τw

D
+ ρm gs (26)

3. METHOD OF CHARACTERISTICS

The method of characteristics is the natural numerical procedure for first-order hyperbolic systems. By an appropri-
ate choice of coordinates, the original system of hyperbolic partial differential equations can be replaced by a system
of ordinary differential equations expressed in the characteristic coordinates. Characteristic coordinates are the natural
coordinates of the system in the sense that, in terms of these coordinates, differentiation is simpler (Ames, 1992).

3.1 Mathematical procedure

Consider the vector of state variables:

u = [α αo P j]T (27)

The partial derivative of u with respect to time and position are given by:

∂u
∂t

=
[
∂α

∂t

∂αo

∂t

∂P

∂t

∂j

∂t

]T

(28)

∂u
∂s

=
[
∂α

∂s

∂αo

∂s

∂P

∂s

∂j

∂s

]T

(29)

Consider also the quasilinear hyperbolic system of four equations and four unknowns:

4∑

i=1

(
aji

∂ui

∂s
+ bji

∂ui

∂t

)
+ dj = 0, j = 1, 2, 3, 4 (30)
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We now adopt the matrix notation:

A = [aji] , B = [bji] , d = [dj ]

The system in matrix form becomes:

A
∂u
∂s

+ B
∂u
∂t

+ d = 0 (31)

Let us consider the matrix T, defining a linear transformation. The system of equations, subjected to the linear
transformation, has the form:

TA
∂u
∂s

+ TB
∂u
∂t

+ Td = 0 (32)

The new system of equations is equivalent to the original, in the sense that every solution of one is also a solution of
the other. The linear transformation is used to develop a canonical (or normal) form. A convenient one is such that:

TA = ETB (33)

where E is a diagonal matrix containing the eigenvalues ej , j = 1, 2, 3, 4:

E =




e1 0 0 0
0 e2 0 0
0 0 e3 0
0 0 0 e4


 (34)

Under the assumption of Eq. (33), we may rewrite Eq. (32) as:

ETB
∂u
∂s

+ TB
∂u
∂t

+ Td = 0 (35)

To determine the elements of the matrix T, we should determine the elements ej of the matrix E. For this purpose, Eq.
(33) is analyzed in more detail:

4∑

k=1

tj k ak i =
4∑

k=1

ej tj k bk i (36)

This equation can be modified to:

4∑

k=1

(ak i − ej bk i) tj k = 0 (37)

which is a system of homogeneous equations for tj k. For a non-trivial solution to exist, the necessary and sufficient
condition is:

det (A− ej B) = 0 (38)

The eigenvalues ej are the roots of Eq. (38).
Considering a cartesian coordinate system in which the unit vector i represents the position s and the unit vector j

represents the time t, the direction dsk i + dtk j, for which dsk/dtk = ek, is known as a characteristic direction and the
ek are called the characteristics of the system.

By setting ETB = A∗, TB = B∗ and Td = d∗, the equation system (35) becomes:

A∗
∂u
∂s

+ B∗
∂u
∂t

+ d∗ = 0 (39)

that can also be represented as:

4∑

i=1

b∗ji

(
ej

∂ui

∂s
+

∂ui

∂t

)
+ d∗j = 0, j = 1, 2, 3, 4 (40)

By inspection we can conclude that ej has units of velocity and the directional derivative of the component ui is
defined as:

Dej ui

Dt
= ej

∂ui

∂s
+

∂ui

∂t
(41)

in which the index ej of the directional derivatives refers to the characteristic direction defined by ej .
Therefore, the system in normal form allows to represent the partial derivatives with respect to s and t as directional

derivatives in the characteristic directions, thus simplifying the integration of the system of equations.
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3.2 Characteristics and compatibility conditions

The matrixes A and B and the vector d are assembled from the system of equations (23) to (26):

A =




ρg
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∂α
0 jg
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∂P
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∂j
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(
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∂α

)
ρo jo

αo
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∂ρo

∂P
− αo ρo

αo + αw

∂jg

∂P
− ρdg 0 jo

Bo

∂Rs

∂P

αo ρo

αw + αo

(
1− ∂jg

∂j

)

ρw

αo + αw

(
jo + αw

∂jg

∂α

)
ρw jw

αw
−jw

∂ρw

∂P
+

αw ρw

αo + αw

∂jg

∂P
− αw ρw

αw + αo

(
1− ∂jg

∂j

)

0 0 1 0




(42)

B =




ρg 0 α
∂ρg

∂P
+

ρdg 0 αo

Bo

∂Rs

∂P
0

0 ρo αo
∂ρo

∂P
− ρdg 0 αo

Bo

∂Rs

∂P
0

ρw ρw −αw
∂ρw

∂P
0

0 0 0 0




(43)

d =
(

ρg
∂jg

∂θ

dθ

ds
− αo ρo

αw + αo

∂jg

∂θ

dθ

ds

αw ρw

αo + αw

∂jg

∂θ

dθ

ds
τw
Pm

A
− ρm gs

)T

(44)

From Eq. (38), the characteristics are given by:

e1 =
∂jg

∂α
, e2 =

jo

αo
= ul, e3 = ∞, e4 = ∞ (45)

where ul is the liquid velocity. If the parameters Cd and Ud are not dependent of α, i.e. Cd = Cd(P, j, θ) and Ud =
Ud(P, j, θ) (as in the correlation developed by Bendiksen (1984)) we have, from Eq. (17):

∂jg

∂α
=

jg

α
= ug (46)

where ug is the gas velocity. For this particular case, the compatibility conditions take the form:

b∗11
Dgα

Dt
+ b∗13

DgP

Dt
+ d∗1 = 0 (47)

b∗21
Dlα

Dt
+ b∗22

Dlαo

Dt
+ b∗23

DlP

Dt
= 0 (48)

where the subscripts g and l are associated correspondingly to the gas and liquid characteristics and the coefficients b∗11,
b∗13, b∗21, b∗22, b∗23 and d∗1 are function of the state variables and dependent variables.

From Eq. (45), there exists an algebraically-double eigenvalue equal to ∞, resulting from the fact that the superficial
velocities are related through algebraic relations and the pressure along the pipe can be calculated directly by integrating
the mixture momentum equation. On this ground, the model is qualified as mixed hyperbolic/parabolic.

4. CONCLUSIONS AND PERSPECTIVES

A multiphase flow model suitable for petroleum production systems was presented and its characteristic values and
compatibility conditions were calculated. The characteristics obtained are real, so that the formulation proves to be well
posed.

The existence of two finite eigenvalues (velocities of the gas and liquid phases) allows to use the method of character-
istics to solve the dynamic equations. The main advantage of the method of characteristics is the optimal determination
of the time step, since the Courant-Friedrichs-Lewy (CFL) stability criterion is automatically satisfied.

In (Baliño et al., 2007; Baliño, 2008) a single finite eigenvalue (gas velocity) was found for air-water systems and a
numerical procedure based on a moving grid with the gas velocity was implemented. Based on the results obtained in this
paper, it is possible to use a similar procedure based on a moving grid and, since ul < ug, propagate the characteristic
with the liquid velocity from interpolated values at the solution at time t.
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The model developed in this paper can be used to describe the flow in a riser of slowly varying inclination angle
(vertical, catenary or lazy-wave configuration). In order to describe a petroleum production system, a pipeline connected
to the bottom of the riser and a critical choke valve connected to the top of the riser must be added. As pressure variations
with position in the pipeline are small, the pipeline subsystem can be modeled as a constant pressure cavity (Baliño et
al., 2007; Baliño, 2008), resulting a lumped parameter model for the gas pressure; this model, originally developed for
air-water systems, can be extended for oil-water-gas systems. This is a work in progress.
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