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Abstract. Implicit formulations for inverse problems of parameter estimation, in which a cost function is minimized, 
have largely been employed in several applications related to heat and mass transfer. Gradient based methods have 
been used in most cases, but it has been observed an increasing interest in the use of stochastic methods for the 
solution of inverse problems. In the present work we are interested in the estimation of the scattering and absorbing 
coefficients in two-layer participating media. The direct radiative transfer problem is solved using a combination of 
Chandrasekhar’s discrete ordinates method and the finite difference method. For the solution of the inverse problem 
we propose the use of the Luus-Jaakola method, a random search optimization method that has been successfully 
employed mainly in chemical engineering problems. This method has been used previously by the authors for the 
solution of the inverse problem of radiative properties estimation in single-layer participating media, and in the 
present work it is intended for multi-layer media with relevant applications in remote sensing and biology, among 
others. 
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1. INTRODUCTION 
 

The inverse analysis of radiative transfer in participating media has several practical applications such as optical 
tomography (Kim and Charette, 2007), computerized tomography (Carita Montero et al., 2004), coupled atmospheric-
ocean models (Zhang et al., 2007), hydrologic optics (Chalhoub and Campos Velho, 2001) and radiative properties 
estimation (Nenarokomov and Titov, 2005, Hespel et al., 2003, An et al., 2007). Most of the published works in direct 
and inverse radiative transfer problems deal with one-dimensional plane-parallel media, but a good number of papers 
have also been published looking at radiative transfer in composite layer media, with applications, for example, in 
regional and global climate models (Hanan, 2001, Tanaka et al., 2009), Solar System bodies research (Hillier, 1997, 
Morishima et al., 2009), Earth remote sensing (Verhoef and Bach, 2003, Weng, 2009, Toomey et al., 2009) and multi-
layer clouds studies (Bennartz and Preusker, 2006, Boesche et al., 2009). 

In the present work we focus on the implicit formulation and solution of an inverse radiative transfer problem in a 
two-layer plane parallel medium. When formulated implicitly, inverse problems are usually written as optimization 
problems, and the main focus becomes the minimization of a cost function, for example the one given by the summation 
of the squared residues between a calculated and a measured quantity. For the direct problem solution we use the well 
known Chandrasekhar’s discrete ordinates method combined with the finite difference method. 

For the solution of the inverse problem we propose the use of the Luus-Jaakola method, a random search 
optimization method that has been successfully employed mainly in chemical engineering problems. This method has 
been used previously by the authors for the solution of the inverse problem of radiative properties estimation in single-
layer participating media (Knupp et al., 2007, Knupp, 2008). In the present work the LJ method is used for the 
estimation of the scattering and absorbing coefficients in two-layer participating media. 
 
2. MATHEMATICAL FORMULATION AND SOLUTION OF THE DIRECT PROBLEM  
 

Consider the problem of radiative transfer in a composite medium with two plane-parallel, isotropically scattering, 
gray layers, with diffusely reflecting boundary surfaces and interface, as shown in Fig. 1. The medium is subjected to 
external irradiation on both sides with intensity 1F  at 0x =  and 2F  at 1 2x L L= + . 1L  and 2L  represent the thickness 
of layers 1 and 2, respectively. 
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Figure 1. Two-layer semitransparent medium 
 
The mathematical formulation of the direct radiative transfer problem with azymuthal symmetry is given by 
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where ( , )iI x μ  represents the radiation intensity in layer i , with 1i =  or 2 . iβ  is the total extinction coefficient.  
 

                  i ai siβ κ σ= +                             (3) 
 

aiκ  is the absorption coefficient, siσ  is the scattering coefficient, μ  is the cosine of the polar angle and jρ  are the 
diffuse reflectivities, with 1, , 4j = . 
When the geometry, the radiative properties, and the boundary conditions are known, problem (1-2) may be solved 
yielding the values of the radiation intensities ( )1 ,I x μ , for 10 x L≤ ≤  and 1 1μ− ≤ ≤ , and ( )2 ,I x μ , for 

1 1 2L x L L≤ ≤ +  and 1 1μ− ≤ ≤ . This is the direct problem. 
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In order to solve the direct problem we have used Chandrasekhar’s discrete ordinates method (Chandrasekhar, 
1960). The polar angle domain and the spatial domain are discretized as shown in Figs. 2 and 3, respectively. The 
integral terms on the right hand side of Eqs. (1-2) are replaced by gaussian quadratures. We then used a finite-difference 
approximation for the terms on the left hand side of Eqs. (1-2). With that, 1( , )I x μ  and 2 ( , )I x μ are determined for all 
spatial and angular nodes of the discretized computational domain. 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Angular domain discretization 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Spatial domain discretization 
 
 

The discretized equations are not presented here and can be found in details in (Soeiro and Silva Neto, 2006, Knupp, 
2008). 
 
3. MATHEMATICAL FORMULATION OF THE INVERSE PROBLEM  
 

In the present work we are interested in obtaining estimates for the vector of unknowns 
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1 1 2 2, , ,s a s ak kσ σΖ =  (3)
 

using measured data on the emerging radiation intensity at 0x =  and 1 2x L L= + , iY , with 1, 2, , di N= , being dN  
the total number of experimental data. 

As real experimental data was not available, we generated sets of synthetic experimental data with 
 

( )exp calc exacti ii e iY I I rσ= = Ζ +  (4)
 

where calci
I  represents the calculated values of the radiation intensity using the exact values of the radiative properties, 

exactΖ , which in a real application is not available and we want to determine with the inverse problem solution, eσ  
simulates the standard deviation of the measurement errors, and ir  is a pseudo-random number in the range [-1, 1]. 

In the present work it is considered dN M= , and half of the experimental data is acquired at 0x = , at the polar 

angles corresponding to mμ  with 1, 2, ,
2 2
M Mm M= + + , and half at 1 2x L L= + , at the polar angles corresponding to 

mμ  with 1, 2, ,
2
Mm = . 

When internal detectors are also considered, there is a total of 2dN M=  experimental data, being half of it acquired 
at 0x = and 1 2x L L= +  as described before, and half at the interface 1x L= , at the same polar angles with mμ , 

1,2, ,m M= . 
As the number of measured data, dN , is usually much larger than the number of parameters to be estimated, 

4uN = , the inverse problem is formulated as a finite dimensional optimization problem in which we seek to minimize 
the squared residues functional 

 

( ) ( )
2
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1

d
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i
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Q I Y
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where 

icalcI  represents the calculated value of the radiation intensity (using estimates for the unknown radiative 

properties Z ) at the same boundary, and at the same polar angle, for which the experimental value iY  is obtained. 
 
4. SOLUTION OF THE INVERSE PROBLEM WITH THE LUUS-JAAKOLA METHOD 
 

Random search methods for optimization are based on a random exploration of a domain to find a point that 
minimizes an objective function. They were originally introduced by Anderson (1953), and then developed by Karnopp 
(1963) and Matyas (1965), among others.  

Random search methods have been widely employed in chemical engineering for continuous optimization as, for 
example, those proposed by Luus and Jaakola (1973), Gaines and Gaddy (1976), and Salcedo et al. (1990). The most 
popular of these techniques is the Luus-Jaakola algorithm (LJ, Luus and Jaakola, 1973), which has been used not only 
in chemical engineering (Luus and Jaakola, 1973, Lee et al., 1999, Luus and Hennessy, 1999, for example), but also in 
control problems (Luus, 2001), in optics (Al-Marzoug and Hodgson, 2006), in electrical engineering (Singh, 2005), and 
in chromatography (Poplewska et al., 2006), among other applications. 

As stated by Liao and Luus (2005), the idea behind the Luus-Jaakola algorithm is very simple: random solutions are 
selected over a region that is decreased in size as iterations proceed.  

Our implementation of LJ is described in Fig. 4. It differs from the original algorithm proposed by Luus and Jaakola 
(1973) in one point: while, originally, x* was replaced by a possible improved solution only after the internal loop was 
completed, we replace x* immediately if a better solution is found, as suggested by Gaines and Gaddy (1976) in their 
optimization algorithm. 
 

 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

 
 

Figure 4. The Luus-Jaakola (LJ) pseudo code 
 

5. RESULTS AND DISCUSSION 
 

For our test case we consider a two-layer medium composed of two different plane-parallel medium with the 
properties shown in Table 1. 

Table 1. Properties considered for the test case 
 

Property Value 
( )1 cmL  0.8 

( )2 cmL  3.2 

( )-1
1 cmsσ  0.8 

( )-1
1 cmak  0.5 

( )-1
2 cmsσ  0.9 

( )-1
2 cmak  0.3 

1ρ  0.1 

2ρ  0.0 

3ρ  0.0 

4ρ  0.6 
 
This situation corresponds to two different adjoint layers with the following dimensionless radiative properties 
 

1 2
1 2

1 1 2 2

0.61, 0.75s s

a s a s

σ σ
ω ω

κ σ κ σ
= = = =

+ +
 (6)

 
( ) ( )01 1 1 1 02 2 2 21.04, 3.84a s a sL Lτ κ σ τ κ σ= + = = + =  (7)

 
The external radiation was considered as 1 0.3F =  and 2 1.0F =  in Eqs. (1b) and (2c), respectively.  
These properties were intentionally chosen equally to those considered in (Soeiro and Silva Neto, 2006), where the 

same problem is solved using the Levenberg-Marquardt method (LM, Marquardt, 1963) and a hybridization of the 
Simulated Annealing method (SA, Kirkpatrick et al., 1983) with LM (SA-LM).  

The LJ was set with 100in outn n= = , 0.05ε =  and the search space was considered [0,1] for all unknowns. All LJ 
runs were performed on a PC with the processor AMD Turion™ 63 X2 Mobile (1.60 GHz with 1.37 GB of RAM). 

 
 

Choose an initial search size (0)r . 
Choose a number of external loops nout and a number of internal loops nin. 
Choose a contraction coefficient ε. 
Generate an initial solution *x .  
For i = 1 to nout 
  For j = 1 to nin 
    ( ) * ( ) ( 1)j j i−= +x x R r , where ( )jR is a diagonal matrix of random numbers between -0.5 and 0.5. 
    If Fitness ( ( )jx ) < Fitness ( *x ) 
      * ( )j=x x  
    End If 
  End For 
  ( ) ( 1)(1 )i iε −= −r r  
End For 
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Starting with the initial guess 
 

{ } { }0 0 0 0 0
1 1 2 2, , , 0.18, 0.93, 0.30, 0.81

T T
s a s aσ κ σ κΖ = =  (8)

 
neither the LM nor the hybridization SA-LM converge, as shown in Tables 2 and 3. 
 

Table 2. Results obtained with the LM using only external detectors. 0.002eσ =  (5%) 
(Soeiro and Silva Neto, 2006) 

 

Iteration 1sσ  1aκ  2sσ  2aκ  ( )Q Z  

0 0.18 0.93 0.30 0.81 1.94E-01 
10 0.0284 0.0404 22.77 9.23 4.10E-02 
20 0.0 0.0 115.31 115.51 1.40 

 
Table 3. Results obtained with the hybridization SA-LM using only external detectors. 0.002eσ =  (5%). 

(Soeiro and Silva Neto, 2006) 
 

Iteration 1sσ  1aκ  2sσ  2aκ  ( )Q Z  

0 0.928 0.599 0.923 0.294 5.16E-04 
5 0.519 0.346 0.995 0.331 5.19E-05 

10 0.519 0.346 0.995 0.331 5.19E-05 
 
In Table 4 are presented the results obtained with the LJ in 10 independent runs. It is also shown the average, Zμ , the 
standard deviation, Zσ , and the CPU time. The last run started with the initial guess in Eq. (8), the others started with 
random initial guesses in the search space. It can be seen that even though the average of the runs led to estimates that 
are very close to the exact values, the standard deviation is relatively high, what happens because the estimates are not 
accurate. The unknown 2aκ  was the only one that was able to be well recovered in all runs. 
 

Table 4. Results obtained with the LJ using only external detectors. 0.002eσ =  (5%) 
 

# Run 1 0.8sσ =  1 0.5aκ =  1 0.9sσ =  2 0.3aκ =  ( )Q Z  CPU Time 
(min) 

1 0.846 0.514 0.916 0.303 6.61E-05 120.7 
2 0.735 0.448 0.936 0.311 8.25E-05 126.4 
3 0.600 0.387 0.980 0.326 7.72E-05 118.2 
4 0.932 0.548 0.898 0.297 3.60E-05 114.1 
5 0.976 0.617 0.810 0.273 5.41E-05 116.6 
6 0.816 0.518 0.886 0.294 3.47E-05 118.8 
7 0.679 0.438 0.936 0.312 3.51E-05 118.9 
8 0.676 0.442 0.940 0.311 5.46E-05 118.0 
9 0.704 0.460 0.936 0.311 5.92E-05 115.8 

10 0.922 0.538 0.903 0.299 1.05E-04 114.8 

zμ  0.789 0.491 0.914 0.304   
zσ  0.128 0.068 0.045 0.014   

100%z

z

μ
σ

×  16.3% 13.8% 5.0% 4.7%   
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In Fig. 5, the same results of Table 4 are shown in graphics. The confidence bounds have been included. 
As the sample size is relatively small (10 runs), the confidence bounds have been calculated based on the Student’s 

T distribution as 
 

( 1),(1 ) ( 1),(1 ),Z Z
Z n C Z n Ct t

n n
σ σ

μ μ− − − −
⎛ ⎞

− × + ×⎜ ⎟
⎝ ⎠

    (9) 

 
where ( 1),(1 )n Ct − −  is the critical value for the Student’s T distribution with n  data points, i.e., 1n −  degrees of freedom, 
and %C  confidence. For this case, we have 10 runs, i.e. 10n = . Considering 99% confidence, 

( 1),(1 ) (9),(0.01) 3.250n Ct t− − = = . 
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Figure 5. Results obtained with the LJ using only external detectors. 0.002eσ =  (5.0%). 
              , average;                 , exact values;                  , confidence bounds;       , estimates. 

 
In Fig. 5 it is clear that, with exception of 2aκ , all the confidence bounds are relatively wide, i.e., the estimates are 

not accurate. Nevertheless, the performance of LJ for this test case with 0.002eσ =  was better then the performance of 
LM and the hybridization SA-LM (Tables 2 and 3, respectively). 

In Tables 5 and 6 are presented the results obtained with the hybridization SA-LM and with the LJ, respectively, 
considering external and internal detectors, for the same situation 0.002eσ =  (errors up to 5%). The hybridization SA-
LM and the last run of LJ started with the initial guess in Eq. (8). The other runs of the LJ started with random initial 
guesses in the search space. 

 
Table 5. Results obtained with the hybridization SA-LM using external and internal detectors.  

0.002eσ =  (5%). (Soeiro and Silva Neto, 2006) 
 

Iteration 1sσ  1aκ  2sσ  2aκ  ( )Q Z  

0 0.928 0.599 0.923 0.294 3.38E-03 
5 0.7938 0.4988 0.8940 0.297 8.96E-05 

10 0.7938 0.4988 0.8940 0.297 8.96E-05 
 

2sσ  

1sσ  

2aκ  

1aκ  

Run Run 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 
 

Table 6. Results obtained with the LJ using external and internal detectors. 0.002eσ =  (5%) 
 

# Run 1 0.8sσ =  1 0.5aκ =  1 0.9sσ =  2 0.3aκ =  ( )Q Z  CPU Time 
(min) 

1 0.816 0.504 0.899 0.300 1.35E-04 111.8 
2 0.788 0.502 0.891 0.298 7.15E-05 111.9 
3 0.792 0.499 0.893 0.300 1.17E-04 111.8 
4 0.809 0.504 0.893 0.299 1.05E-04 111.7 
5 0.808 0.500 0.894 0.300 1.53E-04 111.8 
6 0.802 0.500 0.900 0.298 1.06E-04 111.9 
7 0.788 0.504 0.897 0.299 1.45E-04 114.2 
8 0.783 0.497 0.913 0.301 1.08E-04 117.2 
9 0.812 0.495 0.891 0.301 2.04E-04 118.1 

10 0.797 0.501 0.895 0.298 1.16E-04 122.4 

zμ  0.800 0.501 0.897 0.299   

zσ  0.012 0.003 0.007 0.001   

100%z

z

μ
σ

×  1.4% 0.6% 0.7% 0.4%   

 
In Fig. 6, the results of Table 6 are shown in graphics. The confidence bounds have been calculated with Eq. (9). In 

this case, when external and internal detectors are used, it can be seen that all the 10 runs yielded good estimates and the 
confidence bounds are much narrower. 
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Figure 6. Results obtained with the LJ using external and internal detectors. 0.002eσ =  (5.0%). 
              , average;                 , exact values;                  , confidence bounds;       , estimates. 

 
When external and internal detectors are used, both the hybridization SA-LM and the LJ were able to recover all 

unknowns of the inverse problem. 
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6. CONCLUSIONS 
 
From the results presented in this work, it can be concluded that the LJ, despite its simplicity, yields good estimates 

for the inverse radiative transfer problem for the estimation of the scattering and absorption coefficients in a two-layer 
plane-parallel medium. Even when only external detectors are used (and consequently non-uniqueness of the solution 
arises), the averages of the runs are close to the exact values of the unknowns (obviously with relatively wide 
confidence bounds). 
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