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Abstract. When two rigid surfaces are in contact and provided with relative motion, their roughness and the stresses 

shared by both generate friction having positive or negative effects. Regarding the bearings, the friction, which is 

directly associated with energy dissipation, is considered undesirable. Many studies have dealt with friction reduction 

procedures. The use of materials to separate the two contacting surfaces is widely used and known as "Lubrication". 

Basically, the term "lubrication" is associated with the introduction of a fluid film between surfaces that have relative 

motion, in order to prevent solid contact. Thus, the oil alters solid friction between two solid surfaces to fluid friction, 

between a solid surface and a fluid. In this paper the lubricant film present in a hydrodynamic bearing was analyzed 

according to its dynamic characteristics. The evaluation of the coefficients was achieved from the pressure 

distribution. A finite-difference method was applied to obtain the solution of the Reynolds equation.  The coefficients 

were obtained with a mass-spring-damper concept, in order to represent the inherent flexibility and damping of the oil 

film. Thus, the feasibility of the application for lubricated bearings with different geometries was evaluated, depending 

on the rotating speed of the machine, the bearing load and the lubricant viscosity. This procedure allows adjustments 

for tests at high rotating speeds and high values of applied load. 
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1. INTRODUCTION 
 

Journal bearings are, by definition, two elements with relative motion separated by a lubricant fluid, which avoids 

contact of solid parts and, consequently, wear and failure in rotating machines. The fluid film between moving parts 

must be able to provide a load capacity with the minimum of energy losses as possible and without introducing 

undesired instabilities.  

Journal Bearings are composed, basically, by a sleeve, with a curved surface (cylindrical, elliptical or multilobe) and 

a shaft inside, separated from the housing by a fluid film. In the beginning of the motion there is direct contact between 

the journal (part of the shaft within the bearing) with the sleeve walls. Then the fluid is forced into the region below the 

journal due to the shear forces generated by the rotation axis. This creates high pressure at the surface shaft. The high 

pressure supports the weight of the rotor, preventing the journal contact with the surface of the bearing.  

The idea of representing the dynamic characteristics of a journal bearing by means of stiffness and damping 

coefficients was introduced by Stodola (1925) and Hummel (1926). Their aim was to improve the calculation of the 

critical speed of a rotor by including the flexibility of the bearing oil film. Concurrently, Newkirk (1924 and 1925) 

described the phenomenon of bearing induced instability, which he called oil whip, and it soon occurred to several 

investigators that the problem of rotor stability could be related to the properties of the bearing coefficients as can be 

seen from Castro and Cavalca (2008), Gunter (2005) and Bently (2002). 

In the initial stage, one of the difficulties was that the only available solution of Reynolds equation was 

Sommerfeld’s for the infinitely long bearing, sometimes modified by a suitable end-leakage factor, and the only 

assessments on the rotor dynamics were the calculation of the first critical speed, using the methods of either Rayleigh 

or Stodola. 

In the late forties, more advanced rotor dynamics calculation methods were developed, and with the advent of the 

computational mechanics in the fifties, it soon became feasible, at little cost, to obtain numerical solutions to the 

Reynolds’ equation and to perform more complete models. Even so, the concept of bearing coefficients was not 

immediately accepted, probably because the load-displacement characteristic of a journal bearing is so evidently non-

linear. Experience, however, has demonstrated the practical utility of the linear coefficients, and the modern rotor 

dynamics calculations are firmly based on the concept. 

The study of dynamic coefficients is a difficult task. Nowadays many efforts have been directed to obtain the 

problem solution (Meruane and Pascual, 2008; Wang and Khonsari, 2006). 

 

2. THEORY AND RESULTS 
 

2.1 Analysis 
 

In a x - y coordinate system with origin in the bearing center and the x - axis in the static load direction (see Fig. 1), 

the reaction forces from the lubricant film are given by: 
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where p is the pressure generated within the fluid, R is the journal radius, L is the axial length, z  is the axial coordinate 

and θ  is the circumferential angular coordinate from the negative x - axis. The film extends from 
1θ  to 

2θ  where both 

angles may be functions of z . 

 

 
 

Figure 1. Coordinate system 

 

The basic differential equation, which governs the pressure distribution in the lubricant fluid inside the gap of a 

journal bearing, is the Reynolds Equation, derived by Osborne Reynolds in his paper in 1886, and it is given by 
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where t  is time, x  and z  are the Cartesian coordinates, µ is the absolute viscosity of the lubricant, U is the 

peripherical velocity of the rotor and h is the film thickness, according to the bearing geometry. 

 

θθ sincos yxCh r ++=  (3) 

 

Cr is the radial clearance, and  x - y are the coordinates of the journal center. 

The reaction forces are function of x and y, and of the instantaneous journal center velocities, x&  and y&  (“dot” 

indicates time derivate). Hence, for small deviations, x∆ and y∆ , measured from the static equilibrium position (
0x  

and 
0y ), a first order Taylor series expansion yields: 
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where the coefficients are the partial derivatives evaluated at the equilibrium position (Lund, 1987): 
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and similary for the remaining coefficients. 

At the equilibrium position  (
0x ,

0y ), 00 =yF  while 0xF  equals the static load, W . 

In this paper the coefficients are often computed directly by numerical differentiation by employing a perturbation 

solution. Thus, equation (3) may be written as: 

 

hhh ∆+= 0
 (6) 
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where: 
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Reynolds’ Equation is a second-order, non-homogeneous, partial differential equation which is difficult to solve 

analytically. To solve the equation the finite difference method will be used, with some additional assumptions: 

• The viscosity and the density of the lubricant film do not change, maintained a constant load and speed. 

• The pressure is assumed zero on the periphery of the journal bearing. 

  

2.2 Finite Difference Method 

 

The Reynolds’ Equation was evaluated using a Finite Difference Method (see Pinkus 1956, 1958 and 1959). For this 

paper, several meshes were tested, and a mesh with 6400 points (80 points in each direction), was the mesh with the 

best relationship between accuracy and computational cost. Thus, a mesh of 6400 points was chosen and dimensionless 

pressure on each point of the mesh is given by: 

 

( )

2

3

2

32

2

3

2

32

2

3

2

32

2

3

2

32

cos126

x

h

z

h

L

D

x

h

z

h

L

D

senyxp
x

h
p

z

h

L

D
p

x

h
p

z

h

L

D

x

hh

p

LBRT

L

L

B

B

R

R

T

TRL

N

∆
+

∆








+

∆
+

∆









∆+∆+
∆

+
∆









+

∆
+

∆








+

∆

−

=

θθπ &&
 (8) 

 

Regarding the hydrodynamic forces, the pressure values are integrated numerically in order to provide the vertical 

and horizontal resultants forces. 
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For any given bearing geometry, shaft velocity and load, an equilibrium position of the shaft is given by the 

boundary condition 0=HF  which can be obtained by assigning the proper value of the eccentricity and the attitude 

angle. 

For the calculation of the bearing dynamic coefficients, the differential form of the Taylor’s expansion is evaluated 

by finite difference. 

 

2.3 Pressure Distribution  
 

The pressure distribution of the oil film inside the bearing is characterized in this section. Analysis are made to a 

cylindrical bearing, an elliptical bearing and a three-lobe bearing both with pre-load m=0.5. The geometric 

characteristics of each type of bearing is shown in Figure 2. 

 

 
Figure 2. Design of Cylindrical, Elliptical and Three-Lobe Bearings 

 

In all cases, the rotation and applied load are the input parameters and, with the value of these variables and with the 

geometric data of the bearing, the equilibrium position is found and the pressure distribution is evaluated. The bearing 
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geometric characteristics and operating parameters are given in Table 1. The lubricant oil is an ISO VG46 at the 

temperature (T) of 40ºC. 

 

Table 1. Bearing input data 

 

Diameter (m) Axial Length (m) Radial Clearance (m) Load (N) Viscosity (Pa.s) Rotation (rpm) 

0.18 0.099 1.35x10
-4

 21384 14.32x10
-3

 6800 

 

Figures 3 to 8 show the pressure distribution for all the studied cases. 

It can be noted (Fig. 5 and Fig.6), for an elliptical bearing, the presence of two peaks of pressure, where 0° to 180° 

represents the lower lobe of the bearing and 180° to 360°, the upper lobe (Fig. 2b). This can be explained, for this type 

of bearing, by the fact of for low eccentricity ratios, we have the axis located on the upper semi-plane of the bearing, 

making the oil film present in the upper lobe to be compressed to generate larger reaction forces and, consequently, a 

pressure field in that region. 

As the tri-lobe bearing is composed by three lobes, it can be notice that its arcs are of 120° (Fig. 2c). The first peak 

of pressure is related to the lower lobe (1), the central peak corresponds to the right lobe (2) and the last peak, to the left 

lobe (3). It can be noted by the graphs, Fig. 7 and Fig. 8, the highest pressure is on the lower lobe. The right lobe of the 

distribution has a slightly higher peak of pressure than the left lobe. 
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Figure 3: Pressure Distribution Cylindrical Bearing 

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3
x 10

6

Angle [rad]

P
re

s
s

u
re

 [
P

a
]

 

Figure 4: Center Line Pressure Cylindrical Bearing 
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Figure 5: Pressure Distribution Elliptical Bearing 
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Figure 6: Center Line Pressure Elliptical Bearing 
 

  



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

  

0

2

4

6

8

0

0.05

0.1
0

1

2

3

4

5

6

x 10
6

 

Angle [rad]Axial Length [m]
 

P
re

s
s

u
re

 [
P

a
]

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

6

 
Figure 7: Pressure Distribution Three-Lobe Bearing 
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Figure 8: Center Line Pressure Three-Lobe Bearing 

  

 

2.4 Comparison of Dynamic Coefficients  

 

The results presented in this section were obtained using the numerical model previously described and the 

geometrical data of a bearing typically used in turbines (Table 1).  

This paper provides solutions for three distinct geometries of journal bearings: cylindrical, elliptical  and three-lobe. 

The elliptical bearings had 2 axial grooves of 30-deg arc each and 3 different elliptic ratios (pre-load), m=0.25, m=0.5 

and m=0.75. The three-lobe bearings had the same elliptic ratios and no axial grooves. 

The following graphics show the stiffness and damping coefficients as a function of the rotation speed for all the 

different types of bearing used in this paper. The rotation speed was considered at high levels along with high values of 

applied load as initially proposed. 

In all cases, the rotation speed started at 60 rpm (1 Hz) and was increased gradually (1 Hz steps) until the maximum 

value of 18,000 rpm (300 Hz). In the damping coefficients graphics, the lines that represent the 
xyB  and 

yxB  

coefficients were overlapping, and only the red line (corresponding to the 
xyB  coefficient) can be seen. This 

phenomenon will be discussed later in this paper. 
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Figure 9: Stiffness Coefficients Cylindrical Bearing 
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Figure 10: Damping Coefficients Cylindrical Bearing 
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Figure 11: Stiffness Coefficients Elliptical Bearing 

m=0.25 
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Figure 12: Damping Coefficients Elliptical Bearing m=0.25 
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Figure 13: Stiffness Coefficients Elliptical Bearing m=0.5 
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Figure 14: Damping Coefficients Elliptical Bearing m=0.5 
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Figure 15: Stiffness Coefficients Elliptical Bearing 

m=0.75 
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Figure 16: Damping Coefficients Elliptical Bearing m=0.75 
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Figure 17: Stiffness Coefficients Three-Lobe Bearing 
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Figure 18: Damping Coefficients Three-Lobe Bearing m=0.25 
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Figure 19: Stiffness Coefficients Three-Lobe Bearing 
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Figure 20: Damping Coefficients Three-Lobe Bearing m=0.5 
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Figure 21: Stiffness Coefficients Three-Lobe Bearing 
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Figure 22: Damping Coefficients Three-Lobe Bearing m=0.75 
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The damping coefficients for all analyzed cases were numerically very close, so were the shape of the curve in the 

graphics. Regarding the cross-coupling, due to the fact that they derive from self-adjoint operators, these coefficients 

are coincident. The damping matrix, therefore, will be symmetric and will have principal directions (with an 

orthonormal basis formed by eigenvectors). That is not true for the stiffness matrix where the cross-coupling stiffness 

coefficients are unequal, thus the stiffness matrix will be nonconservative (Lund, 1987). 

With respect to the stiffness coefficients, it is noted that the values of the cylindrical bearing stiffness is lower than 

the coefficients of the other two geometries. This is due to the pre-load existing on elliptical and three-lobe bearings. 

Figures 11, 13 and 15 show a significant increase in the stiffness coefficients on the x direction (vertical), in both the 

cross-coupling and the direct coefficients, for elliptical geometry. That behavior is not observed in the coefficients in 

the y direction (horizontal). This is explained by the fact that the radial clearance used in the cylindrical bearing is the 

major clearance in the elliptical  bearing in the y direction (see Fig. 2).  

For the three-lobe bearing the stiffness coefficients with low pre-load (m = 0.25) are close to the cylindrical bearing. 

This result comes from the fact that its geometry (3 arcs with 120-deg equally spaced from the bearing center) is closer 

to a cylindrical bearing. With the pre-load increasing, the stiffness coefficients have a significant increase in magnitude. 

One can observed that, in addition to the coefficients in the x direction (vertical), the direct stiffness coefficient in y 

direction (horizontal) also has a significant increase (Fig. 21). 
 

2.5  Locus of Shaft Center 
 

Figures 23 to 29 show the locus of shaft center for all different types of bearing geometries analyzed. The results are 

shown in polar-coordinates graphs. The dimensionless eccentricity was evaluated as a function of the attitude angle 

from an equilibrium position of the shaft. In the elliptical and three-lobe bearings, the values of eccentricity and attitude 

angle correspond to the total bearing equilibrium position, since these types of bearings have values of eccentricity and 

attitude angle for each lobe separately. 

The eccentricity was evaluated in a dimensionless form related to the radial clearance of the bearing. Hence, when 

the dimensionless eccentricity is 1, there is metal-metal contact between the shaft and the sleeve, and at a null 

eccentricity the shaft and the bearing are concentric. 

The variation of eccentricity and attitude angle occur with the change in the rotation speed. In all cases there is an 

increase of the attitude angle and a decrease in the eccentricity with the rotation speed increasing. This is the result of 

the centralizing tendency of the shaft inside the bearing at high rotation speeds. 

Comparing the graphs from Fig. 23 to Fig. 29, it is noticed that for the elliptical bearing, the shaft center often finds 

itself above the center of the bearing for small pre-loads. This may seem surprising, but a little thought about the 

dynamics of the oil film will provide the reason. In an elliptical bearing the pressure wedge created in the lower left-

hand side has a very high convergence and therefore the resultant horizontal force will be very high. This force is not 

sufficiently balanced by the forces acting to the lower right-hand side unless the shaft center moves upward and to the 

right. This movement increases the pressure wedge both on the top half and on the right-hand side of the lower half (see 

Fig. 5 and Fig. 6). 

Regarding the three-lobe bearing, the upper part of the locus curve shows the effect of the two side lobes (see Fig. 7 

and Fig. 8), which decrease the curve slope compared to the other bearings slopes. This is very important for the 

stability of the bearing. 
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Figure 23: Locus of Shaft Center Cylindrical Bearing 
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Figure 24: Locus of Shaft Center Elliptical Bearing m=0.25 
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Figure 25: Locus of Shaft Center Elliptical Bearing m=0.5 
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Figure 26: Locus of Shaft Center Elliptical Bearing m=0.75 
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Figure 27: Locus of Shaft Center Three-Lobe Bearing 
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Figure 28: Locus of Shaft Center Three-Lobe Bearing 

m=0.5 
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Figure 29: Locus of Shaft Center Three-Lobe Bearing 

m=0.75 

 

 

2.6  General Comments 

 

Results for dynamic coefficients of stiffness and damping are difficult to validate directly due to the paucity of 

experimental data of these quantities. For the results presented in this paper the validation was made indirectly. The 

bearing presented in the analysis comes from an industrial application in an energy power plant machine. The frequency 
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response of all the system is known experimentally, as well as some points in the pressure distribution of the bearing, 

which indicates the feasibility of the model in the operational frequency range of the system. 

Through the analysis of the dynamic coefficients results for different types of bearings, it can be noted that the 

bearings with pre-load, have an increase in the stiffness coefficients (keeping up the damping coefficients of almost 

constant) with increasing pre-load. This is due to the fact that as higher the pre-load in the lobes is, smaller is the 

eccentricity of the bearing and consequently higher is the generate forces in the bearing. 

Regarding stability, one can make a qualitative analysis through the relation between the direct and cross-coupling 

stiffness coefficient. A bearing is usually more stable, at high rotating speed (small eccentricity ratios), as higher is the 

difference, in module, between the direct and cross-coupling coefficients, in a given direction (Gash at al, 2002). In the 

cylindrical bearing, for high speeds, direct and cross-coupling coefficients in both directions have the same order of 

magnitude. In elliptical bearings, with the pre-load increasing, there is a significant increase in the direct stiffness 

coefficient xxK , for high speeds, making their relative difference (with respect to yxK ) larger than in the cylindrical 

geometry. In the three-lobe bearing, the increase of xxK  coefficient is not so expressive as in the case of elliptical 

bearings, however, its main advantage is that the horizontal direct stiffness coefficient ( yyK ) also increases, rising the 

difference between all the cross-coupling and direct coefficients, making the three-lobe bearing one of the most stable 

fixed geometry bearing. 

 

3. CONCLUSIONS 
 

The finite difference method is proposed to solve the lubrication dynamic model for three different types of journal 

bearings. The concept of stiffness and damping coefficients for journal bearings has proven very useful, and modern 

rotor dynamics calculations for unbalance response, damped natural frequencies, and stability are based on this concept. 

The theoretical limitation of small amplitudes is of little importance in practice, but the analysis still needs 

improvements, for example as refinements in the model for film rupture. The nonlinear behavior, however, is 

sometimes of concern in practice, and for practical purposes the instability threshold computed on basis of the 

linearized coefficients should be adopted as the first approach for the design criterion. As can be also observed, pre-

loaded bearings tend to increase stability when at high speeds (small eccentricity ratios). This increase in the stability 

threshold is due to the fact that each lobe of the bearing has its center of curvature at different points. 
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