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Abstract. Today, the design of new robotic cells requires the use of graphic simulation tools that make possible the 
verification and definition of a number of key design points before having the physical devices (robots) and the 
workcell. Examples are to test the robot reachability, visualize the trajectory, detect collision points, support the 
definition of layout, determine production times, etc. In this context this paper addresses the issue of designing 
supervisory control systems for flexible collaborative robotic cells in aircraft industry. For this purpose a mixed 
approach based on Petri net and graphic simulation is proposed. Petri net is used to model the supervisory system that 
coordinates the activities of robots. Graphic simulation is used to illustrate the behavior of the robots in a 3D 
environment. The flexibility of the application requires that the robots work as ‘slaves’ of the supervisory system. Its 
trajectory is not previously programmed in the robot controller but is defined, in real time, by the supervisory system. 
As a consequence, in order to validate the collaborative robotic cell, both simulation tools must be integrated. The 
motivation of this work is the design of a workcell for the aircraft industry. The workcell automates the processes of 
drilling and clipping fuselage parts. The workcell is composed of two robots which must work in cooperation. 
 
Keywords: Petri nets; Graphic simulation; Collaborative robotic; Validation; Aircraft industry; Robots; Supervisory 
system  

 
1. INTRODUCTION 

 
The demand for manufacturing cells composed of multiple robots is becoming a frequent situation in industry. In 

these cases, the operations performed by one robot depend on the other robots. The integration and synchronism of the 
robots are a critical factor, as well as the integration of the robots with other machines of the manufacturing cell. 
According to Chaimowicz (2002), some types of tasks, called "strongly coupled tasks," can only be performed by the 
multiple robots operating in cooperation. In this case, the robots must be coordinated. When a robot executes a task, it 
must receive and provide information about its state to the other robots, in order to preserve its integrity and, also, the 
integrity of the entire system. Furthermore, the occurrence of failures in at least one of the robots can harm/hinder the 
fulfillment of the task of all. 

The exchange of information and the coordination of the robots can be made by a supervisory system. In this case, 
the programming of the supervisory system and the programming of each robot must include a validation step that 
integrates the behavior of the robots and supervisory system in a common validation environment.  

In this context, this paper addresses the problem of designing flexible robotic cells composed for multiple robots 
with a supervisory system responsible for integration and coordination of the robots. 

The flexibility of the robotic cells is characterized by the following conditions: 
 The definition of the robot trajectory is performed in real time by a system external to the robot controller. 

This is the case of applications that requires accuracy higher than that provided by the robot. An external 
measurement system then requires the correction of the robot position and orientation.  

 The cooperation between multiple robots results in an undefined trajectory, requiring the interaction with 
the supervisory system to coordinate the activities of the robots. 

 The application requires the processing of exceptions and failure treatment in a more elaborated way than 
simply suspending the operation of the robot. 

This paper proposes a new approach to support the supervisory system design and validation based on the combined 
use of Petri nets and graphical simulation of robots. The Petri net is used for modeling and simulating the control logic 
of the supervisory system, while the graphical simulation of robot display the resulting behavior of the robots in a three 
dimensional environment.  

This work is motivated by a cooperative project between ITA and the Brazilian aircraft industry. This project aims 
at the automation of aircraft structural assembly using multiple and flexible robotic cells. 

This article is organized as follows. Sections 2 and 3 introduce the two techniques used in the proposed approach: 
graphical simulation of robots and Colored Petri Nets. Section 4 presents the proposed approach and illustrates its 
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application through a case study of the aircraft industry. Finally Section 5 presents some conclusions and discusses 
future work. 
 
2. DIGITAL MANUFACTURING AND GRAPHICAL SIMULATION OF ROBOTS 
 

Today, the manufacturing organizations around the world, not only in the aeronautics sector but also in other 
sectors such as automotive, compose a hyper-competitive environment that forces a changing of paradigm. Products are 
becoming more complex and dynamic. Along with reduced cycles of innovation, product lifecycles and times-to-market 
are being progressively reduced (Souza et al., 2002). 

Companies are seeking new ways to achieve competitive advantage and bring new products to market faster and at 
a lower cost. One of the new paradigms that emerges to support this scenario is Digital Manufacturing. According to 
Banerjee and Zetu (2001), Digital Manufacturing can be defined as the modeling of systems and components with the 
effective use of computers, audiovisual devices and sensors to simulate or design alternatives for a manufacturing 
environment. Its purpose is to predict potential problems and inefficiencies in its functionalities or manufacture, before 
it is actually manufactured. 

Digital manufacturing is the ability to describe every aspect of the design-to-manufacture process digitally—using 
tools that include digital design, CAD, CAM, analysis software, simulation, and so on. Digital Manufacturing should 
address the development, simulation and manufacturing of a product virtually on a computer before they are performed 
in the real world, regardless of the degree of complexity of the shape and the structure of the product (Souza et al., 
2002). The basic idea behind it is to move bits instead of moving atoms.  

According to Souza et al. (2002), the use of Digital Manufacturing is being incorporated in some companies, 
especially in the aerospace and automotive sector. Some companies that already use the Digital Manufacturing are: 
Boeing, which developed the 777 aircraft in a full digital environment before actually building it; DaimlerChrysler, 
which produced three vehicles using Digital Manufacturing; and John Deere, which also has used this new environment 
in the development of its products (Wave, 2002). In the national scenario, many companies such as Volkswagen Brasil 
and ZF do Brasil are already using Digital Manufacturing with the purpose of optimizing processes, reducing 
development time and investment, improving quality, and managing knowledge.  

Among the various resources available in Digital Manufacturing environment, the graphical simulation of robots 
stands out (Zimmermann, 2007). It is used for off-line programming, accessibility analysis of the tool, detection of 
interferences, among other. The graphical simulation of robots, especially of industrial manipulators, is increasingly 
used in manufacturing systems. The ease with which it incorporates the off-line programming makes the simulation a 
powerful tool for the planning of a new work cell or aiding in the programming of the current robots (Silva, 2004). 

The graphical simulation of robot aims to visualize and check the performance of robots in a manufacturing cell. It 
can be used to determine some features, such as the robot reachability and envelope (Stobart and Dailly, 1985) (Aguiar 
et al., 2007a). 

Other benefits brought by the use of graphical simulators are (Silva, 2004), (Aguiar et al., 2007b):  
 Reduction in production times. With the help of simulation, it is possible to determine the time of each operation, 

detect bottlenecks, and seek for best trajectory solutions. 
 Verification of accessibility. Graphical simulators come with libraries composed of a large range of commercial 

robot models. Therefore, it is possible to test the access of different robots and compare solutions without having 
the robots or building the work cells.  

 Programming reuse and flexibility. It is possible to modify and reuse programmed operations. Regular and 
symmetric parts can be programmed using the mirror function.  
 
A computational tool for graphical robot simulation must include from models of different robots and structures to 

inverse kinematics algorithms. The inverse kinematics supports the programming of the tool position or trajectory, in 
Cartesian space, without the need of defining the joints angles. It leaves to the simulator the responsibility of calculating 
the joint angles, given the position of the tool (Aguiar et al., 2007b). Despite the resources provided by graphical 
simulators, the planning of trajectories for a robotic manipulator is still a complex task that involves various aspects 
such as modeling barriers, manipulating sensor data, searching for collision-free trajectories and avoiding settings that 
cause singularities in the robot (Leng and Chen, 1997).  

Currently, a large number of commercial tools support graphical simulation and off-line programming of robots. 
Usually, these products are developed by companies that also produced CAD tools and/or companies that design and 
commercialize robots (Silva, 1996). Examples are ROBCAD, RobotStudio, Easy-Rob, KUKA.Sim Pro and Grasp10. 
 
3. COLORED PETRI NETS 
 

The second technique used for verification in the proposed approach is Petri Nets. Petri Nets (PNs) are a graphical 
and mathematical modeling technique originally developed by C.A. Petri in the early 1960s to characterize concurrent 
operations in computer systems. The greatest appeal of PNs is their conceptual simplicity (Moore and Brennan, 1996). 
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It is also good to describe static and dynamic system characteristic, and system uncertainty. The structure of PN models 
can be exploited to develop efficient algorithms for system control (Qiao et al., 2002). 

PNs have been extended to capture many important aspects of systems, which includes attributes, timing 
relationships, and stochastic events (Moore and Brennan, 1996). Colored Petri Nets (CPNs) extend the classical Petri 
Nets with colors (to model data), time (to model durations), and hierarchy (to structure large models) (Mulyar and Van 
der Aalst, 2005). In real-world systems, we often find many parts that are similar. These parts must be represented by 
disjoint and identical sub-nets in PNs. This means that the net becomes largely and it becomes difficult to see the 
similarities between the individual sub-nets. CPNs provide a more compact representation where individual sub-nets are 
replaced by one sub-net with different kind of tokens, each token having a color and representing a different sub-net in 
the equivalent PN (Elkoutbi and Keller, 1998) (Qiao et al., 2002). CPNs are very appealing and appear uncomplicated 
because of their simple graphical representation (Arjona and Bueno, 2003). Like in classical Petri Nets, CPNs use three 
basic concepts: transition, place, and token (Mulyar and Van der Aalst, 2005) (Jensen, 1997a). CPN is a graphically 
oriented modeling language capable of expressing concurrency, non-determinism, and system concepts at different 
levels of abstraction. CPNs combine PN and programming languages within the same mathematical framework. Petri 
Nets are used to model concurrency, synchronization, and resource sharing and allocation, whereas a functional 
programming language is used to model data manipulation and to create compact and parameterized models (Zhang et 
al., 2001). 

Places are used to store entities. Color sets associated with the places indicate the different types of entities that can 
be stored in the places. Entities are represented by color instances (copies) of the colors associated with the places and 
are referred to as colors or tokens. Tokens stored in the places, referred to as the marking of the CPN, define the state of 
the system. Transitions represent sets of related events. Transitions fire (are executed) to change the state of the system. 
Color sets associated with the transitions indicate the different ways (events) in which the transitions can fire (Arjona & 
Bueno, 2003). 

Given a CPN net structure and an initial marking, the dynamics of a CPN is determined by the enabling and 
occurrence rules, modeled by arc inscriptions and guards of transitions (Gordon and Billington, 1998) (Zhang et al., 
2001). There are two types of arcs in respect to transitions: incoming arcs and outgoing arcs. Incoming arcs connect 
from input places to a transition, and outgoing arcs connect from a transition to output places. Inscriptions on incoming 
arcs specify the numbers and colors of tokens from the input places that must be in place in order for a transition to be 
enabled; and, once the transition occurs, to be consumed. Inscriptions on outgoing arcs specify tokens that the 
occurrence of a transition produces and puts into the output places (Zhang et al., 2001). 

Transition guards are optional, and if present, impose additional conditions for transitions to be enabled and to 
occur. Enabled transitions can occur either concurrently or sequentially, and in various orders, depending on the 
numbers of available tokens in places. It is also possible that the occurrence of some transitions changes the state of a 
net such that the conditions of other enabled transitions are no longer met (Zhang et al., 2001). 

Despite its conceptual simplicity, CPNs have proved to be a very powerful modeling tool for discrete event systems, 
capable of modeling sequences, conflicts, concurrences, and synchronization. They provide a formal framework for the 
design, specification, validation, and verification of discrete systems (Arjona and Bueno, 2003). 

PN has been used in a large variety of areas. Their application ranges from informal to formal systems and from 
software to hardware systems and from sequential to concurrent systems. As mentioned in (Jensen, 1997b) PN are used 
in communication protocols, distributed algorithms, computer architecture, computer organization, human-machine 
interaction and many others areas (Elkoutbi and Keller, 1998). 

One issue with using PN to model a manufacturing system is that the difficulty of building and analyzing a PN 
increases greatly with the complexity of the system being modeled. If a system model is very complex, containing 
thousands of nodes and transitions, the analysis of this model will be very difficult and time consuming. An approach 
must be developed where correct PN models of a complex system can be developed and extended from simpler models 
that are easy to prove valid (Qiao et al., 2002). 

The wish to model and analyze large systems by means of PN has shown the need for a modular approach. The main 
advantages which are expected from this approach are (Sibertin-Blanc, 1993): (a) a better command of the complexity 
of systems, thanks to a rigorous structure of the model and the possibility to consider different parts of the model 
independently of each other; and (b) a greater ease to adapt, correct, analyze or reuse a model, thanks to the localization 
of these tasks at the level of components. 

PNs may be connected by merging of transitions, by merging of places, and also by arcs (Sibertin-Blanc, 1993) 
(Lakos, 2005) (Jiao et al., 2005) (Westergaard, 2004). Transitions merging have the advantage to ease the system's 
analysis, because many properties are preserved when nets are composed in this way (Sibertin-Blanc, 1993). 

Composition of nets by places merging corresponds to communication by variable sharing. The management of the 
shared place requires an additional synchronization between the nets. Connecting nets by arcs ensures the smallest 
coupling and it corresponds to communication by "message sending" (arc from a transition to a place) and "message 
taking" (arc from a place to a transition) (Sibertin-Blanc, 1993). 

This work uses the CPN and CPNTools application for modeling the control logic of supervisory system and robots. 
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4. VALIDATION OF FLEXIBLE ROBOTIC CELLS 
 
4.1. Proposed Approach 
 

The approach proposed in this study for the validation of flexible robotic cells is organized in the following steps: 
 

Step 1: Process Modeling in PFS 
The PFS (Production Flow Schema) modeling technique is used to develop a high-level model of the process to be 

executed in the robotic cell. The model includes the sequence of operations performed by each robot and their 
coordination by a supervisory system in a high level of abstraction.  

 
Step 2: Definition of Communication Protocols 

Using information from the previous step, a high-level protocol for communication between the supervisory system 
and the robots is defined. It should include the specification of commands and variables that must be exchanged 
between them in order to perform the process defined in Step 1. 

 
Step 3: Modeling of the Programs in Petri Net 

The top-down approach is adopted in this step to generate a Petri net model from the PFS model of Step 1. The 
programs of robots and supervisory system are detailed to a level such that it includes the exchanging messages defined 
in Step 2. 

 
Step 4: Validation of Models 

The Petri net models of the robots and supervisory system are integrated and the behavior of robotic cell is validated 
by simulation and/or by a formal verification. 

 
Step 5: Conversion of the Models 

The models of robot programs are converted from Petri net to the programming language of the robot simulator. The 
model of the supervisory system should be converted to an appropriate programming language. This language could be 
a structured programming language, such as C, a PLC programming language, or other language used in industrial 
environment, such as LabView. 

 
Step 6: Simulation in 3D 

The robot simulator and the supervisory system program must be integrated in order validate the procedure in a 3D 
environment. 
 
4.2. Case Study 
 

The drilling and placement of rivets in aircraft fuselages are currently implemented in a manner predominantly 
manual in the Brazilian aircraft industry. Aimed at automating the process, the proposed approach is applied to the 
design of a robotic cell for assembly of aircraft structural. 

The application considered deals with the movement of two robots in tightly coupled tasks, running the drilling and 
placement of rivets in a longitudinal junction of fuselage, as indicated by the arrows in Figure 1. 
 

 
 

Figure 1. Robotic cell. 
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To simulate the performance of two industrial robots interacting with the section of fuselage and other components, 
ROBCAD1 is used as tool for the graphical simulation. 

Following the proposed approach, the supervisory system and the programs of the robots are modeled in a 
Coloured Petri Net and later converted to a programming language of ROBCAD, the TDL. Information on the TDL can 
be found at (Siemens PLM Software, 2009). The C programming language is adopted for the supervisory system 
programming. 

The implementation of the proposed procedure in this case study is shown below. 
 
Step 1: Process Modeling in PFS 

The process considered in this application is the implementation of a longitudinal junction between two sections of 
fuselage. The robot 1 uses the tool for drilling and insertion of rivets, while the robot 2 operates as counterpoint of the 
operation. The PFS of the process is illustrated in Figure 2. 

 

 
 

Figure 2. General PFS of the process. 
 

The process begins with loading of the input data file. This file consists of the positions of the references already 
installed in the fuselage and the expected positions of the fasteners to be installed. 

Following, the robots are closed to fuselage (activity 1). This movement is carried out in fast speed. 
The actual position of each reference should be verified by Robot 1 (activity 2), which has a system of vision. In the 

process used as an example there are only two references. 
Depending on the difference between the actual position and the position defined in the data file of the two 

references, the positions of the rivets are corrected (activity 3). Both robots are then used to make the installation of the 
rivets (activity 4). Activities 3 and 4 are performed at low speed. Following these activities the robots are sent to the 
HOME position with command of fast speed. 
 
Step 2: Definition of Communication Protocols 

The commands to be exchanged between robots and supervisory system for accomplishing this process are: 
 Command "move $joint" to move the robot in fast speed; 
 Command "move $linear" to make incremental movements in low speed. 

The data to be exchanged between each robot and the supervisory system are organized in the following variables: 
 Position and orientation of destination: set of 6 real variables; 
 Flag_interno: integer variable that indicates the robot that it should execute a new command in accordance 

with data of other variables. This variable also identifies the command (joint or linear) to be executed by the 
robot; 

 Flag_externo: binary variable that informs to the system of supervision that the robot completed the last 
command requested. 

 
Step 3: Modeling of the Programs in Petri Net 

The PFS of Figure 3 is detailed in Colored Petri nets. As example, Figure 3 shows the net equivalent to activity 1. 
The other activities are detailed in a similar way. 

 

                                                           
1 The environment ROBCAD software, version 8, supplied by Siemens PLM Software to the Centro de Competência 
em Manufatura (CCM/ITA). 
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Figure 3. Details of the activity 1. 
 

The nets corresponding to the robot programming are also built. In this case, both networks of Robot 1 and Robot 2 
are similar (Figure 4). 
 

 
 

Figure 4. Net of Robot 1. 
 
Step 4: Validation of Model 

The models in the Petri nets are validated by simulation. In this case the CPN Tools application is used (CPN Group, 
2009). 
 
Step 5: Conversion of the models 

The Petri net of the supervisory system is converted into C language. The Petri net corresponding to the robot 
programming is converted into TDL language of the ROBCAD. The communication between the ROBCAD and the 
supervisory system program is performed by means of writing and reading of files containing shared variables 
exchanged between the two applications. Due to the limitation of ROBCAD communication, this is the chosen way to 
exchange messages with external programs. 

The input data are composed by: 
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 Six real numbers that indicate the position of the first reference with regard to the global coordinate system. 
The first three numbers indicate the coordinates X, Y and Z and the last three indicate the angles of rotation 
rX, rY and rZ; 

 Six real numbers that indicate the position of the last reference with regard to the global coordinate system. 
The first three numbers indicate the coordinates X, Y and Z and the last three indicate the angles of rotation 
rX, rY and rZ; 

 One integer number that indicates how many rivets should be inserted between the two references; 
 A table with the original position of installation of the rivets. 

 
Step 6: Simulation 

In order to verify the process of modeling and creation of the programs, a simulation is implemented using the 
models developed in the ROBCAD and integrated to the supervisory system written in C language. 

Some files are generated during the simulation. They made the communication between the two programs by 
writing and reading activities, which are listed below: 
 “flag1_interno.robcad” and “flag2_interno.robcad”: files responsible for receiving the signal of the type of 

movement from the supervisory system and to provide to robots for reading. Each robot has a file for reading; 
 “flag1_externo.robcad” and “flag2_externo.robcad”: files responsible for receiving the signal indicating that 

robots made certain task and to available for reading the supervisory system. These files are only needed when 
there is the task of synchronization. Each robot has a file for writing; 

 “dadosrobo1.robcad” and “dadosrobo2.robcad”: files responsible for storing information of coordinate 
necessary to the movement of robots. Each robot has a file for reading; 

To initialize the simulation, a file called "coordenadas.robcad" is created containing the input data for the 
simulation. Its content is provided in Table 1. 
 

Table 1. Content provided to the supervisory system. 
 

1 5 
2 5750 5898.8 2135.05 -105 0 0 
3 6750 5898.8 2135.05 -105 0 0 

 
The first line of Table 1 shows how many references should be calculated between the first and last. The second and 

third rows show the first and last reference relating to the global coordinate system, being six real numbers. On line 1, 
the X, Y and Z columns indicate respectively the coordinates X, Y and Z and rX, rY and rZ columns indicate the angles 
of rotation relating to the global coordinate system. In other rows, the X, Y and Z columns indicate respectively the 
displacements in X, Y and Z and rX, rY and rZ columns indicate the rotations relating to the tool coordinate system. 
 

Table 2. Data calculated by the supervisory system. 
 
Line Data of the robot 1 Data of the robot 2 

X  Y  Z  rX  rY  rZ  X  Y  Z  rX  rY  rZ 
1 5750.0000 5802.2072 2160.9320 -105.0000 0.0000 0.0000 5750.0000 5995.3924 2109.1681 75.0000 0.0000 0.0000 
2 0.0000 0.0000 100.0000 0.0000 0.0000 0.0000 0.0000 0.0000 100.0000 0.0000 0.0000 0.0000 
3 0.0000 0.0000 -100.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -100.0000 0.0000 0.0000 0.0000 
4 166.6667 0.0000 0.0000 0.0000 0.0000 0.0000 166.6667 0.0000 0.0000 0.0000 0.0000 0.0000 
5 0.0000 0.0000 100.0000 0.0000 0.0000 0.0000 0.0000 0.0000 100.0000 0.0000 0.0000 0.0000 
6 0.0000 0.0000 -100.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -100.0000 0.0000 0.0000 0.0000 
7 166.6667 0.0000 0.0000 0.0000 0.0000 0.0000 166.6667 0.0000 0.0000 0.0000 0.0000 0.0000 
8 0.0000 0.0000 100.0000 0.0000 0.0000 0.0000 0.0000 0.0000 100.0000 0.0000 0.0000 0.0000 
9 0.0000 0.0000 -100.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -100.0000 0.0000 0.0000 0.0000 
10 166.6667 0.0000 0.0000 0.0000 0.0000 0.0000 166.6667 0.0000 0.0000 0.0000 0.0000 0.0000 
11 0.0000 0.0000 100.0000 0.0000 0.0000 0.0000 0.0000 0.0000 100.0000 0.0000 0.0000 0.0000 
12 0.0000 0.0000 -100.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -100.0000 0.0000 0.0000 0.0000 
13 166.6667 0.0000 0.0000 0.0000 0.0000 0.0000 166.6667 0.0000 0.0000 0.0000 0.0000 0.0000 
14 0.0000 0.0000 100.0000 0.0000 0.0000 0.0000 0.0000 0.0000 100.0000 0.0000 0.0000 0.0000 
15 0.0000 0.0000 -100.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -100.0000 0.0000 0.0000 0.0000 
16 166.6667 0.0000 0.0000 0.0000 0.0000 0.0000 166.6667 0.0000 0.0000 0.0000 0.0000 0.0000 
17 0.0000 0.0000 100.0000 0.0000 0.0000 0.0000 0.0000 0.0000 100.0000 0.0000 0.0000 0.0000 
18 0.0000 0.0000 -100.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -100.0000 0.0000 0.0000 0.0000 
19 166.6667 0.0000 0.0000 0.0000 0.0000 0.0000 166.6667 0.0000 0.0000 0.0000 0.0000 0.0000 
20 0.0000 0.0000 100.0000 0.0000 0.0000 0.0000 0.0000 0.0000 100.0000 0.0000 0.0000 0.0000 
21 0.0000 0.0000 -100.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -100.0000 0.0000 0.0000 0.0000 
22 -833.3334 0.0000 0.0000 0.0000 0.0000 0.0000 -833.3334 0.0000 0.0000 0.0000 0.0000 0.0000 

 
The coordinates calculated for the robots by the supervisory system are presented in Table 2. These are the 

coordinates of the robot 1 from the second to the seventh column and the coordinates of the robot 2 from the eighth to 
the thirteenth column. The first row is the coordinates of the first reference relating to the global coordinate system. 
This reference has a distance of approach / departure surface perpendicular to the fuselage, as shown in point 2 of 
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Figure 5. Thus, the first line provides data to the robots move from the HOME position to the approaching position on 
high speed and on joint movement. High speed is used because of the low accuracy required. The second line of Table 2 
shows the coordinates related to tool coordinate system for the movement of robots at low speed and using linear 
movement with the goal of approximating the tools to the fuselage in a secure manner. These movements are illustrated 
in Figure 5, the origin is point 2 and destination is point 3 of the movement of the robot 1. Lines 3 and 4 of Table 2 also 
show the coordinates relating to the tools coordinate system for departure and displacement to a next approximation. 
The steps of approximation, departure and displacement are repeated in line 5 to line 22, except the last line because it 
provides data to movement the robot from last departure point to the first point of approximation, as exemplified the 
movement of the robot 1 from point 5 to point 2 in Figure 5, thereby ensuring the safety of the cell, because the robots 
will perform movements known and insurance. 
 
 

 
 

Figure 5. Detail of movement of the robot 1. 

 
 

Figure 6. Perpendicularity of the tools relating to the surface of the 
fuselage.

 
The last movement from the departure point of the first reference to the HOME position does not require data to the 

robots. 
Figure 6 illustrates the previous (1) and posterior (2) positions for the approximation movement. There are two 

moments in which the tools are perpendicular to the surface of the fuselage and aligned, moving up slowly and in a 
linear manner until they are in the fuselage. This provides greater accuracy in the motion. 

Results obtained by the graphical simulation with the supervisory program proved to be satisfactory because the 
access to the fuselage were made without collision and perpendicular, guaranteeing successful of the work. It was 
observed that the robot 2 came close to the singularity in the last stages of simulation due to a lower range. 
 
5. CONCLUSION AND FUTURE WORKS 
 

Some facilities and benefits that the graphical simulation provides for the design of a robotic cell are observed in 
this work. Several techniques of access and communication between robots and external systems can be simulated 
satisfactorily without the need of using real components, reducing costs and increasing safety. Furthermore, research in 
the area of modeling and simulation is necessary, especially in developing new techniques for modeling. 

The modeling procedure proposed in this work using Petri nets provides a better comprehension and detailing of the 
tasks of each component of the system, characterizing the elements and their relationships. Moreover, the centralization 
of decision-making and robot coordination by an external element makes the system more flexible and intelligent. This 
structure leaves the definition of the robot trajectory to the supervisory system, creating a range of possibilities for real 
time definition of the robot activities, unlike the traditional off-line programming, which fixes and restricts the 
activities. 

The future work is concentrated in the following topics:  
 Include the correction of position at each riveting operation when a reference is available; 
 Include other steps in the process, such as the conversion of the TDL program to a programming language 

native to robots, substitution of the message exchanging via simulator by the standard communication 
protocol used by the robots and the execution of tests in real environment; 

 Develop procedures for drilling and placement of rivets in an orbital junction, as illustrated in Figure 7. In 
this case, the use of track motion as the seventh axis becomes necessary, because it increases the robot 
accessibility (Aguiar et al., 2007a) (Aguiar et al., 2007b). 

 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

 
 

Figure 7. Drilling and placement of rivets of manner orbital. 
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