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Abstract. The flow over square base cylinders has been extensively studied experimental and numerically, not only due 
to its geometric simplicity and academic interest in phenomena as separation and vortex shedding, but also owing to 
its practical application in heat exchangers, flow meters, and flow over buildings, bridges and offshore platforms, 
among others. In this work, this problem is used to validate a numerical code based on the Finite Volume Method 
using staggered grid, SIMPLEC for pressure-velocity coupling, central differencing interpolation scheme, and the 
Immersed Boundary Method together with the Virtual Physics Method to represent de cylinder. The two-dimensional 
incompressible unsteady flow over a square base cylinder with inlet uniform velocity profile and free stream boundary 
conditions for the other boundaries was simulated for Reynolds numbers varying from 100 to 1000. The time-average 
pressure distribution on the cylinder surface for low Reynolds number, lift and drag coefficients, and Strouhal number 
for all Reynolds numbers were compared with numerical and experimental results. The results presented good 
agreement, showing that the Immersed Boundary method is adequate to study this kind of flow. 
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1. INTRODUCTION  
 

The Immersed Boundary Method (IB), initially proposed by Peskin (1972), has been used successfully for studying 
fluid flow in complex geometries with or without fluid-structure interaction. The basic idea of this method is the use of 
a fixed Eulerian grid to solve the fluid flow problem together with a Lagrangian grid to represent the necessary 
interfaces (liquid-gas, liquid-solid, gas-solid interfaces), which is known also as immersed boundaries. These two grids 
interact with each other by prescribed forces in the momentum equations. 

The advantage of the IB method is that the Lagrangian grid representing an interface can be displaced by the forces 
acting on it while the Eulerian grid remains fixed. Therefore, the fluid flow problem can be solved without remeshing, 
which reduces the computational cost to solve fluid-structure interaction problems. There are several models to 
calculate the forces to be introduced in the momentum equation. A comprehensive review about this subject is found in 
Mittal and Iaccarino (2005). One of the most recent models, proposed by Lima e Silva et. al. (2003), is named Virtual 
Physical Model (VPM) and is used in this work. 

The goal of the present work is to apply de Immersed Boundary method together with the Virtual Physical model to 
solve the flow over a square base cylinder in order to validate a computational code based on the Finite Volume 
Methodology. 

 
1.1. Flow over a square base cylinder 

 
The flow over a square base cylinder has been extensively studied experimental and numerically not only due to its 

geometrical simplicity, but mainly due to the academic interest in phenomena as separation and vortex shedding. In 
addition, there are several industrial applications involving this type of flow as heat exchangers, flow meters, and flow 
over buildings, bridges and offshore platforms.  

For Reynolds numbers below a critical value, crRe , the flow initially separates at the trailing edges instead the 

leading edges, and then reattaches on the lateral surfaces of the body, (Okajima, 1982). Thus, two symmetrical vortexes 
growth behind the body and are known as recirculation bubbles. For Reynolds numbers larger than the critical value, a 
periodical vortex shedding regime, known as Von Kárman instabilities, is noticed in this type of flow. Several values 
for crRe are presented in the literature. Okajima (1982) has already observed the vortex shedding formation for Re≈70. 

A lower value ( 54crRe = ) was reported by Kelkar and Patankar (1992). Sohankar (1998) mentions that the frequency 

of vortex shedding is very well defined for 200Re < . A dimensionless parameter generally used to present this 
behavior is the Strouhal number,St , which is defined as follow: 
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where f is the vortex shedding frequency. This parameter is determined by Fast Fourier Transform (FFT) of the 
transversal velocity signal, which is obtained using a numerical probe located at 1D distance from the cylinder at the 
center line, as illustrated in Fig. 2. 

The vortex shedding regime has direct influence in the forces acting on the immersed body, and vice-versa. The 
longitudinal and transversal forces are represented, respectively, by the drag (DC ) and lift ( LC ) coefficients, and the 

mean pressure distribution on the cylinder surface is represented by the mean pressure coefficient, PC , which are 

defined by: 
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where xF  and yF  are the acting forces on the body in the x and y directions, A is the transversal area, T is the total time 

simulated, t∆  is the time step, p is the pressure on the cylinder surface, and 0p  is a reference pressure, settled at the 

entrance of the domain. 
Several flow configurations have been studied in the past 30 years. Okajima (1982) has studied experimental and 

numerically the flow over square base cylinders for Reynolds numbers varying from 70 to 42 10 , for various aspect 
ratios. The author has observed that the Strouhal number (flow pattern) varies remarkably with the Reynolds number 
and aspect ratio. Davis and Moore (1982) has simulated numerically the two-dimensional flow over a square base 
cylinder with free stream conditions for Reynolds numbers varying from 100 to 2800 providing drag and lift 
coefficients results. Sohankar (1998) has also simulated numerically the flow over a square base cylinder for several 
angles of incidence and low Reynolds numbers (45 200− ) and has observed that the critical Reynolds number 
diminishes for increasing angles of incidence. Flows in confined regimes have been studied by Davis and Moore 
(1984), Breuer et. al. (2000), and Zou et. al. (2005). Shear flows have been studied numerically by Cheng et.al. (2007), 
Lankadasu, and Vengadesan (2008). Owing to the large amount of results in this subject flow, flow over a square base 
cylinder has largely been used as bechmarck to validate numerical codes and experimental setup. 

In the present work, the two-dimensional unsteady incompressible flow over a square base cylinder is numerically 
simulated using inlet uniform velocity and free stream conditions on the other boundaries, for Reynolds numbers 
varying from 100 to 1000. This problem is used to validate a numerical code based on the Finite Volume Method, using 
a staggered grid, SIMPLEC for pressure-velocity coupling, and central differencing scheme for interpolating the 
convective-diffusive terms. The Immersed Boundary Method together with the Virtual Physical Model area used to 
represent the cylinder in the flow. The Strouhal number, the mean pressure distribution on the cylinder surface, and the 
drag and lift coefficients are presented for all numerical simulations and compared with experimental and numerical 
data. 
 
2. MATHEMATICAL FORMULATION 
 

The two-dimensional unsteady incompressible flow over cylinders is governed by mass conservation and Navier-
Stokes equations, given by: 
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where ρ and µ  are the density and dynamic viscosity of the fluid, respectively, p  is the pressure, and iu  represents 

the velocity components. The Eulerian force density field, iF , in Eq. (1), models the immersed boundary, being 

responsible to represent the body inside the flow. The Virtual Physical Model is used to calculate this force. 
 
2.1. Virtual Physical Model (VPM) 
 

As mentioned previously, in the IB method the interface of a solid body immersed in the flow is defined by discrete 
Lagrangean points. The non-slip condition on the solid surface is prescribed by Eulerian forces, iF , in the Navier-

Stokes equations, Eq. (2). In order to determine this force, the forces acting at each Lagrangian point must be calculated 
and distributed to the Eulerian domain. One manner to calculate this force has been proposed by Lima e Silva et. al. 
(2003), and is known as Virtual Physical Model. 

In this model, the Lagrangean force density is obtained through a momentum balance in a fluid particle at each 
discrete Lagrangian point, kx

�

, which gives the following equation: 
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where ,  ,   e fa f i fv fp

��� �� ��� ���

 represent, respectively, the acceleration, inertial, viscous and pressure forces (by unit volume) 

acting on the fluid particle at the interface. 

All terms described in Eq. (7) must be calculated at the interface using de velocity field, ( )V x
�
�

, and the pressure 

field, ( )p x
�

, obtained by proper interpolations from the Eulerian domain. In order to assure the non-slip and 

impermeability conditions, the flow velocity at the interface must be equal to the interface velocity. The acceleration 

term fa
���

 is calculated by ( )k fkV V tρ − ∆
� �

, where kV
�

 and fkV
�

 are the interface velocity and the fluid velocity at the 

interface, respectively, for the Lagrangian point kx
�

. The calculations of the spatial derivatives in the other terms of 

Lagrangian force density are performed by Lagrange polynomials. Four auxiliary points are defined, as illustrated in 
Fig. 1, and the values of pressure and velocities from the Eulerian domain are interpolated at these points by the 
following distribution function: 
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where φ  represents the pressure or the velocity components, k represents the Lagrangian and auxiliary points, ijx

�

 

represents a volume in Eulerian domain, and ijD  is given by: 

 

( ) ( ) ( ) ij k ij k
ij ij k x y

x y

x x y y
D x x g r g r g g

h h

   − −
   − = ⋅ = ⋅
   
   

� �

 (9) 

 
where xh  and yh  are the dimensions of the Eulerian control volume in the x and y directions. The values of g(rx) and 

g(ry) are calculated by substituting r by rx or ry  in the following function: 
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Figure 1. Lagrangian (k) and auxiliary (1, 2, 3, 4) points 
 

The derivatives are then calculated by using a second order Lagrange polynomial: 
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and in the y direction by: 
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where 1 2 3 4,  ,   and φ φ φ φ  are the interpolated values obtained previously. The pairs ( ) ( )1 1, , ,k kx y x y , 

( ) ( ) ( )2 2 3 3 4 4, , , e ,x y x y x y  are the coordinates of the points k, 1, 2, 3 e 4, respectively. 

The Eulerian density force field, iF , is obtained from the Lagrangian density force, if ,by: 
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where ijD  is the interpolation/distribution function defined in Eq. (5) and k ijV V∆ ∆  is the ratio between the 

Lagrangian and Eulerian volumes. 
Thus, a solid interface immersed in the Eulerian domain is virtually modeled by solving Eq. (2) using the density 

force field, iF . This process is repeated at each time step, assuming that the mass conservation is reached. The norm L2, 

defined in Eq. (16), is used to verify if the non-slip and impermeability conditions are satisfied at the interface. 
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where N is the number of Lagrangian points used to represent the interface. Arruda (2004) has reached values of the 

order of 210−  and lower values are generally considered acceptable. 
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3. NUMERICAL METHOD 
 

The Finite Volume Method is used to discretize the governing equations, using a staggered grid. The central 
differencing scheme is used for interpolating the convective-diffusive terms and the SIMPLEC (Van Doormal and 
Raithby, 1984) algorithm is used to treat the pressure-velocity coupling. The algebraic equation systems are solved 
iteratively using the TDMA algorithm, (Thomas, 1949). 

The geometry of the problem together with the boundary conditions are shown in Fig. 2. 
 

 
 

Figure 2. Geometry of the problem and boundary conditions 
 
The computational mesh used in this work contains 148 x 90 volumes and is presented in Fig. 3. It is observed in the 

detail that the mesh is regular at the cylinder region. 
 

 
Figure 3. Computational mesh 

 
The uniform velocity at the inlet of the flow, inU , is obtained from the Reynolds number defined as : 

 

inU D
Re=

ρ
µ

 (17) 

 
5. RESULTS AND DISCUSSIONS 

 
Numerical simulations were performed for Reynolds numbers varying from 100 to 1000. The total time and the time 

step used in each simulation were 300 s and 210− s, respectively. Since the Reynolds number range simulated was larger 
than the critical value as reported by Kelkar and Patankar (1992), 54crRe = , in all simulated cases, the flow changes to 

a vortex shedding regime, known as Von Kármán street.  
In Fig. 4a it is observed the formation of two recirculation bubbles behind the cylinder at the initial times for 

100Re = . For the same Reynolds number the vortex shedding regime is observed for other times. However, for 

Detail 
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300Re = , the same behavior is not found and the vortex shedding regime occurs practically since the initial times, as 
shown in Fig. 4b. 

 

  
(a) Re=100 

 

  
(b) Re=300  

 
Figure 4. Vorticity contours at t=15s e 45s for (a) Re=100 and (b) Re=300 

 
Figure 5 shows the vorticity contours at time t=150s for various Reynolds numbers to illustrate the vortex shedding 

behavior. For Reynolds equal to 100, Fig. 5.a, it is observed that the flow attaches at the lateral surface and the vortexes 
detach only at the trailing edges of the cylinder. However, for 300Re ≥  it is observed that the vortex detaches from the 
lateral surfaces near the leading edges of the cylinder, forming small recirculation regions on the top and bottom faces 
of the cylinder that are not completely steady, as mentioned in Robichaux et. al. (1999). Furthermore, it is observed a 
pairing of vortexes for 500Re ≥  and they stretch out in the longitudinal direction for increasing Reynolds numbers. 

 

  
(a) Re=100 (c) Re=500 

  
(b) Re=300 (d) Re=900 

 
Figure 5. Vortex formation behind the cylinder for several Re at t= 150s 
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An interesting remark obtained from Fig. 5 is that there are recirculation regions inside the cylinder because, in IB 
method, the fluid occupies the entire domain.  

Figures 6.a and 6.b show the power spectrum of the transversal velocities for Reynolds varying from 100 to 500 and 
600 to 1000, respectively, highlighting the frequencies of vortex shedding used to calculate the Strouhal numbers.  
 

  
(a) Re 100 – 500 (b) Re 600 – 1000 

 
Figure 6. Power spectra of the transversal velocity signal 

 
The Strouhal numbers were compared with experimental data obtained by Lindquist (2000), in Fig. 7, indicating a 

good agreement. 
 

 
Figure 7. Strouhal number for Re 100 to 1000 

 

Figure 8 shows that the mean pressure coefficient on the cylinder surface, PC , agrees satisfactorily with numerical 

data obtained by Cheng et. al. (2007) for Reynolds equal 100. 
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Figure 8. Mean pressure coefficient on the cylinder surface for Reynolds equal to 100 
 

Figures 9.a and 9.b present the pressure distributions on the surfaces for all simulated Reynolds numbers. These kind 
of result are hardly found in the literature. It can be observed in Fig. 9a that the distribution is symmetrical in relation to 
the center line and the maximum value is located in the middle point of the front face AB, for 500Re ≤ . The pressure 
on the lateral surfaces is larger for Re=100 because the vortex released at the leading edges reattaches, as observed in 
Fig. 5.a and mentioned in Okajima (1982). For 600Re ≥ , Fig. 9.b, it is observed a flat pressure distribution on the 
frontal face. In addition, the pressure increases on the other surfaces BC, CD and AD of the cylinder for increasing 
Reynolds number.  

 

 
(a) Re 100 to 500 

 

5  
(b) Re 600 to 1000 

 
Figure 9. Mean pressure coefficient on the cylinder surface for (a) Re 100-500 and (b) Re 600-1000 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

The behavior of the longitudinal and transversal forces acting on the cylinder are described by the drag and lift 
coefficients, respectively, shown in Fig. 10 for Reynolds number equal to 100, 300, and 500. For 500Re < , both 
coefficients have regular fluctuations with approximately constant amplitudes. For 500Re=  the same regularity is not 
found because of the turbulence regime. 

 

 
 

Figure 10. Drag, DC , and lift, LC , coefficients for Re equal (a) 100, (b) 300, and (c) 500 

 
Comparisons between the results reported by other authors and the present computation for Reynolds numbers equal 

to 100 and 200 are given in Tab. 1, which shows good agreement mainly for the Strouhal number. 
 

Table 1. Comparison of lift and drag coefficients and Strouhal number  
 

 Re = 100  Re = 200 
St Cd Cl  St Cd Cl 

Okajima (1982) 0.135 – 0.14 - -  0.140 – 0.148 1.45 - 
Frank and Schonung (1990) 0.154 1.61 ± 0.270  0.157 1.60 ± 0.60 
Kelkar and Patankar (1992) 0.130 1.80 -  - - - 
Sohankar et. al. (1998) 0.146 1.47 ± 0.156  0.150 1.462 ± 0.377 
Robichaux et. al. (1999) 0.154 1.53 -  0.167 2.72 - 
Cheng et. al. (2007) 0.144 1.44 ± 0.152  0.150 1.45 ± 0.372 
Present work 0.132 1.89 ± 0.310  0.149 2.094 ± 0.52 

 
 

6. CONCLUSIONS 
 

In the present work, the two-dimensional, unsteady, and incompressible flow over a square base cylinder was 
numerically simulated for Reynolds numbers varying from 100 to 1000. This problem was used as benchmark for 
validating a numerical code based on the Finite Volume Method, which uses the Immersed Boundary Method together 
with the Virtual Physical Method to represent the body. The comparison of the Strouhal number (St) and the mean 

pressure coefficient, PC , showed good agreement with existing experimental and numerical data. The pressure 

distribution on the cylinder surface for several Reynolds numbers, which is hardly found in literature, is also presented. 
The employed methodology was able to simulate adequately this kind of flow. 
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