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Abstract. The flow over square base cylinders has been extensively studied experimental and numerically, not only due
to its geometric simplicity and academic interest in phenomena as separation and vortex shedding, but also owing to
its practical application in heat exchangers, flow meters, and flow over buildings, bridges and offshore platforms,
among others. In this work, this problem is used to validate a numerical code based on the Finite Volume Method
using staggered grid, SMPLEC for pressure-velocity coupling, central differencing interpolation scheme, and the
Immersed Boundary Method together with the Virtual Physics Method to represent de cylinder. The two-dimensional
incompressible unsteady flow over a square base cylinder with inlet uniform velocity profile and free stream boundary
conditions for the other boundaries was simulated for Reynolds numbers varying from 100 to 1000. The time-average
pressure distribution on the cylinder surface for low Reynolds number, lift and drag coefficients, and Srouhal number
for all Reynolds numbers were compared with numerical and experimental results. The results presented good
agreement, showing that the Immersed Boundary method is adequate to study this kind of flow.

Keywords: Immersed Boundary Method, Sguare base cylinder, Finite Volume Method, Srouhal, Drag and Lift
Coefficients

1. INTRODUCTION

The Immersed Boundary Method (IB), initially propdsby Peskin (1972), has been used successfulltddying
fluid flow in complex geometries with or withouuftl-structure interaction. The basic idea of thitmod is the use of
a fixed Eulerian grid to solve the fluid flow prelph together with a Lagrangian grid to represent rtheessary
interfaces (liquid-gas, liquid-solid, gas-soliddrfaces), which is known also as immersed bounslafieese two grids
interact with each other by prescribed forces ertftomentum equations.

The advantage of the IB method is that the Lageangrid representing an interface can be displayettie forces
acting on it while the Eulerian grid remains fix&therefore, the fluid flow problem can be solvedheut remeshing,
which reduces the computational cost to solve fhirdcture interaction problems. There are sevaratlels to
calculate the forces to be introduced in the moomargquation. A comprehensive review about thisexthi found in
Mittal and laccarino (2005). One of the most reamotlels, proposed by Lima e Silva et. al. (2008ydamed Virtual
Physical Model (VPM) and is used in this work.

The goal of the present work is to apply de Imm@iiBeundary method together with the Virtual Phyisinadel to
solve the flow over a square base cylinder in otdevalidate a computational code based on thete-iviblume
Methodology.

1.1.Flow over a square base cylinder

The flow over a square base cylinder has been sixtdy studied experimental and numerically notyalie to its
geometrical simplicity, but mainly due to the aoait=interest in phenomena as separation and vattedding. In
addition, there are several industrial application®lving this type of flow as heat exchangereyfimeters, and flow
over buildings, bridges and offshore platforms.

For Reynolds numbers below a critical value, , the flow initially separates at the trailing edgastead the
leading edges, and then reattaches on the latefaktes of the body, (Okajima, 1982). Thus, two sygtrical vortexes
growth behind the body and are known as reciradaiiubbles. For Reynolds numbers larger than titieadrvalue, a
periodical vortex shedding regime, known as Vonrifa@nm instabilities, is noticed in this type of flo®everal values
for Re, are presented in the literature. Okajima (1982)aiesady observed the vortex shedding formatiorREs70.

A lower value (Re, =54) was reported by Kelkar and Patankar (1992). Saraf1998) mentions that the frequency

of vortex shedding is very well defined fdRe<200. A dimensionless parameter generally used to ptetgs
behavior is the Strouhal numbé&t, which is defined as follow:
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wheref is the vortex shedding frequency. This paramededatermined by Fast Fourier Transform (FFT) of the
transversal velocity signal, which is obtained gsinnumerical probe located d Histance from the cylinder at the
center line, as illustrated in Fig. 2.

The vortex shedding regime has direct influencéhin forces acting on the immersed body, and vieceaveThe
longitudinal and transversal forces are represempectively, by the dragC{ ) and lift (C_) coefficients, and the

mean pressure distribution on the cylinder surfacespresented by the mean pressure coefficie_pt, which are
defined by:
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where F, and F, are the acting forces on the body in xtendy directions A is the transversal aregjs the total time

simulated, At is the time stepp is the pressure on the cylinder surface, amdis a reference pressure, settled at the

entrance of the domain.
Several flow configurations have been studied & phst 30 years. Okajima (1982) has studied expetahand

numerically the flow over square base cylindersReynolds numbers varying from 70 &1, for various aspect
ratios. The author has observed that the Stroulmaber (flow pattern) varies remarkably with the Relgs number
and aspect ratio. Davis and Moore (1982) has siedilaumerically the two-dimensional flow over a agubase
cylinder with free stream conditions for Reynoldsmbers varying from 100 to 2800 providing drag difd
coefficients results. Sohankar (1998) has also Isited numerically the flow over a square base dginfor several
angles of incidence and low Reynolds numbe#$-200) and has observed that the critical Reynolds numbe
diminishes for increasing angles of incidence. Fadw confined regimes have been studied by Davis Moore
(1984), Breuer et. al. (2000), and Zou et. al. 80&hear flows have been studied numerically bgrglet.al. (2007),
Lankadasu, and Vengadesan (2008). Owing to the langount of results in this subject flow, flow owesquare base
cylinder has largely been used as bechmarck tdatalinumerical codes and experimental setup.

In the present work, the two-dimensional unsteatpinpressible flow over a square base cylindeumarically
simulated using inlet uniform velocity and freeestm conditions on the other boundaries, for Reynaldmbers
varying from 100 to 1000. This problem is used atidate a numerical code based on the Finite Voliathod, using
a staggered grid, SIMPLEC for pressure-velocity ptimg, and central differencing scheme for integtiolg the
convective-diffusive terms. The Immersed Boundargtidd together with the Virtual Physical Model aresed to
represent the cylinder in the flow. The Strouhahber, the mean pressure distribution on the cytisdeface, and the
drag and lift coefficients are presented for almeuical simulations and compared with experimeatad numerical
data.

2. MATHEMATICAL FORMULATION

The two-dimensional unsteady incompressible flowrosylinders is governed by mass conservation aaex-
Stokes equations, given by:

o (5)
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where p and i are the density and dynamic viscosity of the fluabspectively,p is the pressure, ang represents
the velocity components. The Eulerian force den§id, F, in Eq. (1), models the immersed boundary, being
responsible to represent the body inside the flidve Virtual Physical Model is used to calculates thurce.

2.1. Virtual Physical Model (VPM)

As mentioned previously, in the IB method the ifgee of a solid body immersed in the flow is defirey discrete
Lagrangean points. The non-slip condition on thkdssurface is prescribed by Eulerian forcds, in the Navier-
Stokes equations, Eq. (2). In order to determirgefdrce, the forces acting at each Lagrangiantpourst be calculated
and distributed to the Eulerian domain. One manoeralculate this force has been proposed by Linsila et. al.
(2003), and is known as Virtual Physical Model.

In this model, the Lagrangean force density is ioleth through a momentum balance in a fluid partatieeach
discrete Lagrangian poing, , which gives the following equation:

. Vv (%, - - -
f(%.t)= p% + p(VIONV (%.t) = ~H0N (%,t) + Op(% 1) )
— & v fo

where fa, fi, fv e fp represent, respectively, the acceleration, inesiacous and pressure forces (by unit volume)
acting on the fluid particle at the interface.

All terms described in Eq. (7) must be calculatedha interface using de velocity fieIGV,(f(), and the pressure
field, p(S(’) obtained by proper interpolations from the Ewaleridomain. In order to assure the non-slip and
impermeability conditions, the flow velocity at tivgerface must be equal to the interface velocitye acceleration
term fa is calculated byp(\7k ~Vg )/At, whereV, andVy, are the interface velocity and the fluid velogitythe

interface, respectively, for the Lagrangian poit The calculations of the spatial derivatives in tiker terms of

Lagrangian force density are performed by Lagrangignomials. Four auxiliary points are defined,ilasstrated in
Fig. 1, and the values of pressure and velocitiesfthe Eulerian domain are interpolated at thesiatp by the
following distribution function:

#(%) =ZZ D; (|%; - &) %) ®)

where @ represents the pressure or the velocity compopkntspresents the Lagrangian and auxiliary points,
represents a volume in Eulerian domain, andis given by:
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where h, and h, are the dimensions of the Eulerian control volumée x andy directions. The values af(r) and
g(ry) are calculated by substitutindy r, orr, in the following function:
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Figure 1. Lagrangiark] and auxiliary (1, 2, 3, 4) points

The derivatives are then calculated by using arstooder Lagrange polynomial:

g_f(xk’ )= (% -( Z)_(;(:)_xk) ' (Xz‘( Z)Ei(lz)-xk) ' (E(kxk_-xi)l)?zk-_xxj) “ )

g_j(?()(k'yk):(Xl_x22)((axl_xk)+(x2_)(3¢(bx2_xk)+(xk_xf)¢(&>’(k_x2) 0
and in they direction by:
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where ¢, &, @ andg, are the interpolated values obtained previouslyhe Tpairs (X, Vi ).(X. Y1),
(%2, ¥2) (X3, y3) € (x4.y4) are the coordinates of the poikisl, 2, 3 e 4, respectively.
The Eulerian density force field; , is obtained from the Lagrangian density forég,by:

R (%)= oy (|% - %) fi(xk)ﬁ—\v’: (15)

where D; is the interpolation/distribution function defineéd Eq. (5) andAVk/A\/ij is the ratio between the

Lagrangian and Eulerian volumes.
Thus, a solid interface immersed in the Euleriamdio is virtually modeled by solving Eq. (2) usitige density
force field, F, . This process is repeated at each time step, asguhat the mass conservation is reached. The hgrm

defined in Eq. (16), is used to verify if the ndip&nd impermeability conditions are satisfiedts interface.

JLlosu) +ow)’]

L= N (16)

whereN is the number of Lagrangian points used to reptege interface. Arruda (2004) has reached vatidbe
order of1072 and lower values are generally considered acckeptab
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3. NUMERICAL METHOD

The Finite Volume Method is used to discretize gwerning equations, using a staggered grid. Thtrale
differencing scheme is used for interpolating tlemwective-diffusive terms and the SIMPLEC (Van Dwoat and
Raithby, 1984) algorithm is used to treat the presselocity coupling. The algebraic equation systeare solved
iteratively using the TDMA algorithm, (Thomas, 1949

The geometry of the problem together with the baupdonditions are shown in Fig. 2.
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Figure 2. Geometry of the problem and boundary itimms

The computational mesh used in this work conta#&x.90 volumes and is presented in Fig. 3. liseoved in the
detail that the mesh is regular at the cylindeiareg
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Figure 3. Computational mesh

The uniform velocity at the inlet of the flowJ;, , is obtained from the Reynolds number defined as :

Re= 2D (17)
U

5. RESULTS AND DISCUSSIONS

Numerical simulations were performed for Reynoldmbers varying from 100 to 1000. The total time #reltime
step used in each simulation were 300 s Hhds, respectively. Since the Reynolds number rangelated was larger
than the critical value as reported by Kelkar aathRkar (1992)Re, =54, in all simulated cases, the flow changes to

a vortex shedding regime, known as Von Karman stree
In Fig. 4a it is observed the formation of two realation bubbles behind the cylinder at the ihitisnes for
Re=100. For the same Reynolds number the vortex sheddigigne is observed for other times. However, for
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Re=300, the same behavior is not found and the vortexiding regime occurs practically since the initiatds, as
shown in Fig. 4b.

(b) Re=300
Figure 4. Vorticity contours dt15s e 45s for (ape=100 and (b]Re=300

Figure 5 shows the vorticity contours at tited50s for various Reynolds numbers to illustratethrtex shedding
behavior. For Reynolds equal to 100, Fig. 5.a dbserved that the flow attaches at the lateréhsg and the vortexes
detach only at the trailing edges of the cylindtwwever, for Re>300 it is observed that the vortex detaches from the
lateral surfaces near the leading edges of thadsti forming small recirculation regions on thp 8md bottom faces
of the cylinder that are not completely steadymentioned in Robichauet. al. (1999). Furthermore, it is observed a
pairing of vortexes folRe=500 and they stretch out in the longitudinal directfonincreasing Reynolds numbers.

----- » detacl -----9 detacl

e - pairing
(a) Re=100 (c) Re=500
- » detacl T » detacl

(b) Re=300 (d) Re=900

Figure 5. Vortex formation behind the cylinder fmveralRe att= 150s
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An interesting remark obtained from Fig. 5 is ttisdre are recirculation regions inside the cylindecause, in 1B

Figures 6.a and 6.b show the power spectrum dfréimsversal velocities for Reynolds varying fron®16 500 and

600 to 1000, respectively, highlighting the freqeies of vortex shedding used to calculate the &aboumbers.
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Figure 6. Power spectra of the transversal velsigpal

good agreement.
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Figure 7. Strouhal number f&e 100 to 1000

The Strouhal numbers were compared with experirhélata obtained by Lindquist (2000), in Fig. 7,isating a

Figure 8 shows that the mean pressure coefficierihe cylinder surfaceC_P , agrees satisfactorily with numerical
data obtained by Cheng et. @007) for Reynolds equal 100.
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Figure 8. Mean pressure coefficient on the cylireleface for Reynolds equal to 100

Figures 9.a and 9.b present the pressure distitmitin the surfaces for all simulated Reynolds rarmbrhese kind
of result are hardly found in the literature. Ihdze observed in Fig. 9a that the distributioryimmetrical in relation to
the center line and the maximum value is locatetthénmiddle point of the front face AB, fdRe<500. The pressure
on the lateral surfaces is larger ®e=100 because the vortex released at the leadingsedgttaches, as observed in
Fig. 5.a and mentioned in Okajima (1982). Hee=600, Fig. 9.b, it is observed a flat pressure distidouon the
frontal face. In addition, the pressure increaseshe other surfaces BC, CD and AD of the cylinfigrincreasing
Reynolds number.
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Figure 9. Mean pressure coefficient on the cylirgleface for (a]Re 100-500 and (bfre 600-1000
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The behavior of the longitudinal and transversatds acting on the cylinder are described by tleg émd lift
coefficients, respectively, shown in Fig. 10 foryRelds number equal to 100, 300, and 500. Re<500, both
coefficients have regular fluctuations with approately constant amplitudes. Fée=500 the same regularity is not
found because of the turbulence regime.
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Figure 10. DragCp, , and lift, C, , coefficients forRe equal (a) 100, (b) 300, and (c) 500

Comparisons between the results reported by otitboes and the present computation for Reynoldshausnequal
to 100 and 200 are given in Tab. 1, which showsiggreement mainly for the Strouhal number.

Table 1. Comparison of lift and drag coefficientd &rouhal number

Re =100 Re = 200

St Cd Cl St Cd Cl
Okajima (1982) 0.135-0.14 - - 0.140-0.148 1.45 -
Frank and Schonung (1990) 0.154 1.61 +0.270 0.157 1.60 +0.60
Kelkar and Patankar (1992) 0.130 1.80 - - - -
Sohankaket. al. (1998) 0.146 1.47 +0.156 0.150 1.462 +0.377
Robichauxet. al. (1999) 0.154 1.53 - 0.167 2.72 -
Chenget. al. (2007) 0.144 1.44 +£0.152 0.150 1.45 +0.372
Present work 0.132 1.89 +0.310 0.149 2094 +0.92

6. CONCLUSIONS

In the present work, the two-dimensional, unsteahd incompressible flow over a square base cylineks
numerically simulated for Reynolds numbers varyfrmm 100 to 1000. This problem was used as bendhrizar
validating a numerical code based on the Finiteuxfw Method, which uses the Immersed Boundary Metbgether
with the Virtual Physical Method to represent thedy The comparison of the Strouhal numb@) &nd the mean

pressure coefficient,C_P, showed good agreement with existing experimeatal numerical data. The pressure

distribution on the cylinder surface for severayRads numbers, which is hardly found in literatuisealso presented.
The employed methodology was able to simulate aatetyuthis kind of flow.
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