Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil

A PB-2 RITZ METHOD TO OBTAIN SEMI-ANALYTICAL BENCHM  ARK
SOLUTIONS OF THICK PLATES IN BENDING

Tales de Vargas Lisb6a, taleslisboa@yahoo.com.br
Rogério José Marczak, rato@mecanica.ufrgs.br
Mechanical Engineering Department — UFRGS

Rua Sarmento Leite, 425 — Porto Alegre — RS — Br&$1050170

Abstract. In this paper, the modified Rayleigh-Ritz method (pb-2) is applied to find the solution of moderately thick
plates, under constant transverse load. Using the Mindlin plate formulation, a semi-analytical approximation is
applied to generate displacement solutions for several types of boundary conditions. The influence of the shear strain
in the displacement and resultant stresses is also investigated. A convergence study is presented to validate the resullts,
which are discussed and compared with similar solutions from the literature.
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1. INTRODUCTION

The increasing use of numerical tools to simulaie mechanical behavior of several structural cla$ses been
bringing issues about the validity of the resulifiese tools are used to obtain the approximatetisofu of the
differential equations that govern the componemtal®r. However, numerical tools must be testedh aitalytical or
semi-analytical solutions, regarding the governgggiations. Yet, many tools recently implementedcommercial
software are not satisfactorily tested, and themadxs of analytical solutions for many cases lehdsievelopers to test
their models against other numerical solutions wérly simplified structural theories. Besides tmeportance of
analytical or semi-analytical solutions in benchkiag, these solutions are a great aid for desigmeobtaining quick
solutions for practical problems, without the neafd numerical modeling. In addition, benchmark siolus are
frequently used to support regulatory councils iangnengineering fields, reducing the conservatismases where
there are no similar solutions.

The field of shear deformable plates still lacksalgtical benchmark solutions for many cases of getoyn
boundary conditions and loading. It is usual talfinconsistent relations between tri-dimensionak#tity solutions
and plate theories, but it is important to mentibat they are generally not directly comparable¢sithe differential
equations that govern each other are different,thadooundary conditions are incompatible. Theesftine study of
semi-analytical and/or analytical solutions siiticf place as necessary tools for validating nuraériwodels or to assist
engineers in preliminary designs.

Many researchers have published solutions for thiekes. Salerno and Goldberg (1960) were amondirtteto
obtain a solution for plates including the transeeshear strain. Using the Reissner theory, thelyetke analytic
solutions for Lévy plates under constant transtdossd. Using the finite difference method, CralP87) obtained
numerical solutions for simply supported platesigghe Reissner formulation. The author exploredctse in which a
concentrated load is applied on the center of théepKant and Hinton (1983), using the Segmemabtethod,
obtained numerical solutions for Lévy plates witmiin formulation. Cooke and Levinson (1983) pshid a general
solution for Lévy plates, considering the Mindlilate theory, but a mistake when simplifying thetegs of equations,
making their solution valid only for Navier platddore recently, Lee et. al. (2001) obtained anehjtsolutions for
Lévy plates, departing from relationships betwdendlassic plate theory and the Mindlin plate tige@heir solutions
were based on series expansion of hyperbolic fonstiTherefore, due a characteristic of the LéJytem and the
nature of hyperbolic functions, these solutionsdighow full symmetry in cases with symmetric lsaahd boundary
conditions. Following the same line of latter authoNang et. al. (2001) related the Mindlin pldtedry with the
Reissner plate theory. The authors presented @mabjiutions for Reissner plates. Because of theegaroblems found
in Lee et. al. (2001), again fully symmetric sabms have been not achieved.

The objective of the present work is to derive samalytical solutions for thick plates using thenidlin (1951)
plate model. The displacement field will be appneaied by a linear combination of polynomial funosoThe internal
strain energy and the external work will be caltedathrough this displacement field. A modified Régh-Ritz
method (pb-2) will be applied to obtain stationaonditions and generate the final displacemend fiel

The modified Rayleigh-Ritz (RR) method, called pbi2 based on a multiplicative decomposition of the
approximation field, so that the approximation §paot necessarily contains only cinematically adible functions.
The boundary conditions are imposed by multiplyihg approximation function by a suitable set ofctions. This
modification greatly increases the versatility bé tconventional method and, if used with compulgelaa software,
opens new possibilities for derivation of analyttisalutions for many structural classes. The pb&éhwod has been
applied previously for a number of plate problestatic, dynamic, buckling, etc.). Kitipornchai at. (1994) applied
the method to achieve dynamic solutions of trapedoplates under different boundary conditions. Wand Aung
(2007) used the method to obtain plastic buckloedb of thick plates. Wang et. al. (1997) usedntk¢hod to obtain
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resultant stresses on corner supported rectangldtes. Singh and Elaghabash (2003) use this melfibgyl to get
numerical solutions for large displacements ofargtilar and rhombic thin plates.

2. MATHEMATICAL MODELING

The well known displacement field of Mindlin (195%)described as:
Ua(xl’X27X3):_X3¢a(xl'x2)' US(Xl'XZ’XS)zLIS(Xl'XZ) (1)

where U, are the longitudinal displacementt}, the transverse displacement, the membrane (in-plane)
displacementsyu, the transverse displacement, gndthe rotations along the coordinate axes. The doatek, is

normal to the plate’s middle surface. Herein, Grawlkices vary from 1 to 2. Only transverse loadiags analyzed
here, so the in-plane displacements will be notsmered. Small displacements and isotropic lineawstitutive
behavior are also assumed throughout the text.

Using the displacement field of Eq.(1), the inf&sitmal strain tensor for the plate deformationloamescribed as:

2E”ﬂ = _X3 (¢”xﬁ +¢ﬁ,a) ’ 2E03 = u3,a _¢a (2)

whereE,; are the deformations on the plate middle surfack=g, are the transverse shear strains. Using the Heoke
law, the stress tensor are derived as functiotseoflisplacement field:

1%
O = _XsG{%r,ﬂ * D +M¢yyaaﬁ:| ! Oas = KZG(UW - %) ®)

where g, are the stress on the plate middle surface apd are the shear stresses” is the conventional shear
correction factor.

The resultant stresses are obtained through iritegraf the Cauchy tensor over the thickness, tegul

N, =0,

14

=] ¥

Maﬂ = _D(l_V)|:¢a,ﬂ + ¢;},a +
Qa = Kth(UB,a - ¢a)
where N, are the normal ¢ = #) and shear resultant stresses# ) on the plate middle surfaceyl ,, are the
bending @ = ) and twisting @ # f)moments; and), are the transverse resultant stresses. The bestififmgss is
given by D = Eyh3/12(1—|/2)= Gh*/6(1-v), where E, is the Young modulus. As expected, the normal pladar

shear resultants on the plate middle surface dtelmeito the absence of membrane strains.
The conventional form of the RR method evaluatesvikights of each function in the approximationction the
minimization of the total energy functional:

n=u-Vv,
whereU is the strain energy and, is the loading potential. The minimization of thisctional reads:
M =8(U-V,)=0 (5)
The interpolation of the displacements field coasgd in this work will be constructed in the folloy way:
u, 00, =¢,0,0,, @ 0@ =c,9,0, and @ Og@ =c.g.0. (6)

wherec,, ¢, andc, are the constant sets for the displacement vasaflhe length of these vectorsris, which is
the number of functions in the interpolatiof,,8, and 0. are the interpolation functions for each one d th
interpolated variables. The functiogg, g, and g, are such that:
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n

g = H(Xj _ch)écc (7)

where x; - X, is the equation of the boundary lines of the platee exponen®,, can assume two values, associated

to the type of boundary condition: O for free edged 1 for fixed edges. In this case of the trarsvédisplacement, the
value O represents free edge and the value 1 mqsea supported edge. On the rotational displacgr@erepresents
free rotation and 1 represents fixed rotation melge. In supported edges, the transversal despkaat receive®,, 1

and the rotation normal for this edge 0. In clampddes, both values are 1. The sub-indéxesd j assume integer
values, ranging from 3 to 5 and 1 to 2, respedtivEuation (7) is responsible for “stapling” thenttions®,,0, and
0. along the plate boundary, according to each baynciandition. Therefore Egs.(6) automatically résnla set of

cinematically admissible interpolation functions.
The first variation of the functional in Eq.(5)nsw re-stated as:

m_an_aue_%zo ®)
oc.

oc, Oc

As mentioned before, the interpolation space chasegmolynomial. This is due to the fact that Egp.i& also
polynomial, and therefore the integration of thedtionalE can be exactly accomplished by Gaussian quadrature

The resulting product of the interpolation funcBdry the boundary condition functions is now mapieed natural
coordinate system. This mapping is identical to thell know finite element mapping used in isoparaioe
formulations. The new coordinate system is limie@1,+1].

The interpolation functions are built following tequation:

— viyng-i — iy ng-i — yiyng-i
03m - X1X2 ’ e4m - X1X2 € 05m - X1X2 (9)

where n, is the degree of the primary polynomial (the degoéthe interpolation polynomial before the impiosi of
the boundary conditions), and

= s *2)n, +2) 1)2(n9 +2) (10)

Therefore, the final number of constants for eadlerpolation depends directly on the degree of ghimary
polynomial. The relation between the definitive lenof constants and the degree of the primaryruoiyal is given

by:

o= 1o 10 +2) 1)§ng +2 (11)

3. MATRIX FORMULATION

The application of the RR method demands the etialuaf the strain energy and the external worke Tirst one
is evaluated by the integral of the internal prddoetween the stress and strain tensors in the'slablume. The
second one is evaluated by the integral of the tomds the lateral displacement over the area efplate. Thus, the
internal deformation energy is given by:

-
U.=3 [ETCEdQ (12)
where:
_ T
E= {_ X0 X0, —X (wl,z + (02,1) Us; =@ Uj, — %} (13)

and
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A-v -y 0 00
2%—V %—V 000 .
C=G o 0 G 0 o0|=GC (14)
0 0 0 «k O
| 0 0 0 0 «|

The vector that groups the strains can be decordpase
E =Heg (15)

where:

sz{%l Gy Got®y Uz — @ us,z_%}Tv

- X, 0 0O
0 -x 00
H=| 0 0 -x 00 (16)
0 0 0 10
| 0 0 0 0 1]
The vector in Eq. (16) can be written in termshaf tisplacement variables using a linear operator:
e=d A 7
with:
- . 5 0
Jon
0 0 0x,
— 0 0
do=l O Y Vo |
0
0x, 1 0
0
_/%(Xz 0 ! i
and
A={u, g @) (18)

Now the displacements interpolation of Eq. (6) banwritten as functions of their corresponding ¢ants, grouped
in the following vector:

A= {(:3T c, C }T (19)
so that the interpolated displacements are recdwareugh the following matrix multiplication:

Q3 v 0 0jc

AOqg = vy, O Kc,r=Nir (20)
2] SM Vs |(Cs

where the matriX\ contains the cinematically admissible interpolationctions for each displacement.
After this modification, Eq.(12) can be rewrittest a

u, :%IQXTNTdLTHTCHdLdeQ (1)
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While the loading potential is simply:
V, =jAATPd/\ =7 jA NTPdA (22)

where P :{q m, m2}, andq is the transverse loady, e m, are distributed moments applied on the plate’sdteid

surface.
The first variation of the total potential in E@) (how becomes:

Ty TyT _ T -
jQ(N d.TH CHdLNdQ)k [ NTPdA=0 (23)
After the integrations are carried out, Eq.(23)egates a linear system of equations which can beddor A .

Before proceeding to the solution of Eq. (23)siinteresting to further reduce it. Observing thatmatricesN and
d, are independent tg&;, the system of equations assume the form:

TR _1e T
[ (B RLaLd/\)x-ajAN PdA (24)
where:
. . ]
6(1+|/) 6(1+v)
vh? h® o 0 o
B, =d,N, R, =[""H'CHdx, =G 6L+v) 6L+v) =GR (25)
-2 h3
0 o L o0 o0
12
0 0 0 «h 0
0 0 0 0 «h

The load can be parametrized as:
a, = goa*/E,h* (26)

where q, is the actual load applied), is its normalized counterparg, is a characteristic dimension of the plate (e.g.

dimension of the plate side). This parameterizatiaa been used by several authors (Lee et. all;20@ng et. al.,
2001), and adds numerical stability to the finadtsyn of equations.

Observing that the shear modulus divides the iategn the right side of Eqg. (24), it suggests aeoth
parameterization:

a, =2(1+v)o, = g,a*/Gh* (27)

Hence, the load vectd?, from Eq. (22), can be written as:

4 4 4

4 T 4 4
P:{—quh 0 o} o p=%CN iy o g=9CN g (28)
a a a

It is worth to note that the final result will ndepend on the transverse Young modulus, when theirig is
parametrizaded with this constitutive parameter. &ing the load parameter explicated in Eq. (8%,answer will
depend the material compressibility, it is, thésBon coefficient, only.

Finally, the solution of Eq. (24) is given as:

A= q2,74([ABLTR'LBLd/\)’leNTP'd/\ (29)

where 7 =h/a. Due the geometry parameterization, the upper lamer limits of the integrals are -1 and 1,
respectively, for the two independent variables.



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil

4. RESULTS

The formulation presented in sections 2 and 3 wgddmented in a symbolic algebra software (Map8 and
tested for some well known benchmarks. Quadrilaigleies under four types of boundary conditionsenenalyzed
under unitary transverse loading. The boundary itiond used are: all edges simply supported (SS8®)0pposite
edges supported and the other two free (SFSF),opymsite edges simply supported and the other tamped
(SCSC), and all edges clamped (CCCC). The resuitaireed are normalized for easier verification aghiother
references. The adopted normalizations are:

V_Vl = WD/QOa4 1 V_VZ = Wl/Wt: ’ Muﬁ = Ivlaﬂ/qoa2 1 6{1 = Qa/qoa (30)
wherew, is the convergence value found in the numericalyeis for each boundary and geometric conditions.

4.1 Convergence analysis

A convergence study was accomplished in ordertimate a value fom, which could deliver accurate results for
most cases. From this study it was found that SS&SF and SCSC plates needs only for odd valueg, ofEven
values produced the same results than the oddnamediately below, for displacements and resultaesses as well.
In the case of CCCC plates, convergence was iner&aeonly when increasing evem, . Therefore only even

numbers of terms were used for CCCC plates, anchadter of terms for the other boundary conditions.
Figure 1 shows the convergence behavior for sq&88S and CCCC plates. Note that convergence is not
monotonic, but progressive with the increasengf The maximum value tested was=19. For larger values the

software used become unstable, but at that pomtetinor was in the fourth significant digit of tmermalized
displacement. It was also found a visible influenfehe plate thicknes$) on the convergence rate, particularly for
lower values ofn,, as shown in Fig.1. Also, the larger the aspetib the greater the value af; necessary for

g’

convergence.
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Figure 1 - Convergence curves for square platg$S$8S. (b) CCCC.

4.2 SSSS plates

Table 1 shows the center displacement values dutdior SSSS plates with different aspect ratlsa) (using the
proposed method. The results are compared withr ethietions from the literature, and show very gagdeement.

Although interpolation methods usually show a digant degradation of the stress values when coetpto the
displacement values, in the case of the SSSS thlateesults for moments and shear stress resultamtsalso in good
agreement with other solutions, as shown in TaBl2o worth to note in the results of Tabs.1-3 ig thisible
dependence of the plate thickness, differing frdva ¢tlassical plate theory (CPT) for larger valuésh.oAnother
interesting point to note is the clear lack of syatmy betweenQ, and Q, in all the solutions of Tab.3, not only in the

classical results of Kant (1982), but also in theerecent works of Lee et. al. (2002) and Wanglef2001). This is a
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direct consequence of the non-symmetric seriesnskpas used in those works, demanding a huge nuailierms to
achieve full symmetry for the stress resultante present results are perfectly symmetric.

Table 1 -w, in the plate center SSS8 (= 0.3 andny = 13)

h/a b/a=1 b/a=2 b/a=5
Present Lee el al. %aolgggrg‘ Kant Present Lee el al. %ﬂ%ggrg‘ Present Lee el al. %ﬂ%ggrg‘
work (2002) (1960) (1982) work (2002) (1960) work (2002) (1960)
0,001 0,0040624 - - - 0,010129 - - 0,012971 - -
0,010 | 0,0040645 0,00406 0,00406 0,004q6 0,010132 01003 0,01013 0,012974 0,01297 0,01297
0,050 | 0,0041149 0,00411 0,00411 - 0,010210 0,01021 0,0102 0,013060 0,01306 0,01305
0,100 | 0,0042728 0,00427 0,00424 0,00434 0,010454 01085 0,01041 0,013328 0,01333 0,01327
0,150 | 0,0045360 0,00454 0,00446 - 0,010861 0,010860,01075 0,013774 0,01377 0,01365
0,200 | 0,0049040 0,00490 0,00478 0,00440 0,011430 01183 0,01123 0,014398 0,01440 0,01418
0,250 | 0,0053778 - - - 0,012162 - - 0,015201 - -
Table 2 — Stress resultants for square plates $8SS0,3 en, = 13)
h/a My (s =055, =0) Ma(s =05, =0) My (s =05,=0)
Present Le; et Kant \é\:aglg Present Le;l et Kant \é\:aglg Present Le; et Kant \é\:aglg
work (2002) (1982) (2001) work (2002) (1982) (2001) work (2002) (1982) (2001)
CPT 0,0479 0,0479 0,0325
0,001 0,0478 0,0479 - 0,0479 0,0478 0,0479 - 0,0479,0324 0,0325 - 0,0325
0,010 0,0478 0,0479 0,0478 0,04719 0,0478 0,0479 479,0 0,0479 0,0324 0,0325 0,0324 0,0325
0,050 0,0478 0,0479 - 0,048 0,0478 0,0479 - 0,0480,0324 0,0325 - 0,0322
0,100 0,0478 0,0479 0,0480 0,0442 0,0478 0,0479 480,0 0,0482 0,0324 0,0325 0,0317 0,0316
0,150 0,0478 0,0479 - 0,048% 0,0478 0,0479 - 0,0489,0325 0,0325 - 0,0304
0,200 0,0478 0,0479 0,0484 0,0491 0,0478 0,0479 486,0 0,0491 0,0324 0,0325 0,0299 0,0288
0,250 0,0478 - - - 0,0478 - - - 0,0324 - - -
ha Qs =-1s,=0) Q(s =05 =-1)
Present Leael et Kant \é\:aglg Present LE:I et Kant \é\{aglg
work (2002) (1982) (2001) work (2002) (1982) (2001)
CPT 0,333 0,333
0,001 0,33 0,333 - 0,333 0,33 0,338 - 0,338
0,010 0,33 0,333 0,332 0,334 0,33 0,338 0,337 0,338
0,050 0,33 0,333 - 0,333 0,33 0,338 - 0,338
0,100 0,34 0,333 0,332 0,334 0,34 0,338 0,337 0,338
0,150 0,34 0,333 - 0,333 0,34 0,338 - 0,338
0,200 0,34 0,333 0,332 0,334 0,34 0,338 0,337 0,338
0,250 0,34 - - - 0,34 - - -

4.2 SCSC plates

A single case of SCSC plate was analyzed. Thetsefarl central displacement are shown in Tab.3, @mdpared
with other available solutions. Once again, goaagent of the present results is observed.

Table 3 -w, in plate center SCSQ/(= 0,3)

h/a b/a=1 b/a=2 b/a=5

Present Leeelal. Wang et. Kant Present Leeelal. Wanget. Present Leeelal. Wanget.

work (2001) al. (2001) (1982) work (2001) al. (2001) work (2001) al. (2001)
0,001 | 0,0019172 - - - 0,0084451 - - 0,012931 - -
0,010 0,0019202 0,00192 0,00192 0,00192 0,0084492,00805 0,00845 0,012935 0,01293 0,01293
0,050 0,0019918 0,00199 0,00199 - 0,0085481 0,008550,00854 0,013021 0,01302 0,01311
0,100 | 0,0022087 0,00221 0,00220 0,00218 0,0088500,00885 0,00882 0,01329 0,01329 0,01338
0,150 | 0,0025558 0,00256 0,00254 - 0,0093379 0,009340,00926 0,01374 0,01374 0,01382
0,200 0,0030211 0,00302 0,00298 0,00293 0,010000 01000 0,00985 0,01436 0,01436 0,01445
0,250 | 0,0035957 - - - 0,010827 - - 0,01517 - -
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4.3 CCCC plates

Analytical solutions for fully clamped plates aretably rarer than for other boundary conditionse Tresults
obtained with the present method are compared thihexcellent work of Taylor and Govindjee (200&) thin plates
in Tab.4. In order to achieve 10 digits accura@yl®r and Govindjee (2002) used a matrix syster202000. The
values obtained by the methodology here presengzd generated from a 315x315 system, using a polgi@f 13th
degree. If the same system order could be usdtkipresent method, the interpolation polynomial ibdoe of degree
35, so that even more accurate results could bectagb. Interestingly, the results for thin plate®£0,001) point out
for an error in the third digit of the classicalig®mn of Timoshenko and Woinowski-Krieger (1959).

Table 4 -w, in plate center CCCQO/(= 0,3)

4.4 SFSF plates

ha b/a=1 b/a=2
Present Tay_l or .& Present Tay_l or .&
work Govindjee work Govindjee
(2002) (2002)
0,001 | 0,0012654 0,00126531903¢ 0,00253300,002532955769
0,010 0,0012678 - 0,002608 -
0,100 0,0015046 - 0,002962 -
0,250 | 0,0026580 - 0,004837 -

Table 5 shows the displacement results in cent¢éheoplate and at the middle of the free edge doased plates.
Figure 2 illustrates the contour plot of the noraed lateral displacement (Fig.2a) and the norradlizending moment
(Fig.2b) for a plate witlb/a = 5. These results are ploted in the normalized spHlois aspect ratio is used to make
evident the characteristic anti-clastic curvatutecl appears in plates with this type of boundamyditions. . It can be

noted that the methodology presented here captiveesffect.

1

1

Table 5 -w, in plate center andl, in free edge center in square plates SRSFQ,3)

-02

1)

02

(@)

04 06 08

08 06 0.4 -02 1} 02 0.4

(b)

a6

a8

Figure 2 - (a)w, in center and (bM,, in plates SFSF in normalized coordinates

h/a Center of the plate Middle of the free edge
Present Le;.et. \é\{égﬁ Kant Present Le;.et. Z\t/.azﬁ
work 5002)  (2001) (1982 | work o605y (2001)
0,001 0,013094 - - - 0,015011 - -
0,010 | 0,013097 - - 0,0131 0,015023 - -
0,050 | 0,013187 - - - 0,015214 - -
0,100 0,013459 0,01346 0,01341 0,014 0,015600 56M1 0,01557
0,150 0,013910 0,01391 0,01379 - 0,016161 0,0161601609
0,200 | 0,014539 0,01454 0,01433 0,0143 0,016898 60M1 0,01678
0,250 0,015347 0,01536 0,01502 - 0,017809 0,0178101762
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4.5 Parametric solutions for benchmarking

A study on the influence of the plate thickness wasried out using the present implementation, ridep to
investigate the influence of the thickness over ithsults. This is not necessary in the CPT, siteethin plate
equations are insensitive to the thickness. Irkthiate analysis, on the other hand, the influesfcihe thickness is of
the utmost importance, because it is the varialliielwcontrols the magnitude of the shear deforrtgbiDue to the
high memory requirements to deal with the symbelipressions, the primary polynomial used for SS85GCCC in
this case were of order 5 and 6, respectively, &dmshow in Fig.1, the results still have at I&asbrrect digits. These
results are summarized in the plots of Fig.3, f&SS and CCCC boundary conditions, respectivelyuing the
parametric form of the displacement, the agreemthtother solutions is remarkable.

0.0054 — N
0.012 —
0.0052 —
4 —F—— Present
7 ——<&— leeet.al
0.005 —| ——FF—— Salemo & Goldberg
00115 — —&—— semi-analyticalng=5
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—<&—— leeet.al
0.0048 — ——— salerno & Goldberg |
| 5 —&—— semi-analytical ng=5 | Bﬁ
00046 —| 0011 —
0.0044 —
0.0105 —
0.0042 —
0.004 i i I i | 001 — ‘ 1 I I I ‘
0 0.05 04 015 02 025 0 0.05 01 0.15 02 0.25
h h
(@) (b)

Figure 3 -w, in plates SSSS with (&ja= 1 and (bp/a =2

In order to retrieve a general solution of the eerdisplacement as a function of the thicknessuraecfitting
procedure was performed over the present resuliSgs.3. The canonical form of the curve used thiad degree
polynomial inh:

gpa’

W =25 (e + i+ i + a0) (3D)

where the coefficients were adjusted for each tfggoundary conditions and aspect ratio of theepl@ible 6 lists the
coefficients obtained for two examples. One shawte that in the limith — 0, Eq.(31) reduces to the thin plate
solutions (Timoshenko & Woinowsky-Krieger, 1959)

Table 6 - Coefficients of the semi-analytical equafor w, in the plate center.

SSSS a B y 4
b/a=1| 0,004061 0 0,0211
bla=2| 0,01011 0 0,0326]
ccce a B y {

b/a=1| 0,001264 0,00011 0,230964 -0,00584
b/a=2] 0,00249¢ 0,000811 0,0313§6 0,004597

5. CONCLUSIONS

The pb-2 Rayleigh-Ritz method was developed and appledte solution of rectangular shear deformabl¢esla
under transverse loading. Since the method enfaheeboundary conditions through special functiséch multiply
the displacement interpolation functions, one cem general polynomial spaces to generate admissihi§on spaces.
Several cases of geometry and boundary conditiere analyzed, showing good agreement with refersolkgions.
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The method shows a fast convergence, and is plarigsuitable for benchmarking purposes. Parameatiutions for
rectangular plates were generated in semi-andtytim, including the influence of the thickness. Tgeod performance
of the proposed methodology encourages its exterisigeometrically non-linear problems.
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