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Abstract. This article aims at evaluating and comparing both deformation and stress results in a square plate made of 

an orthotropic laminate material, using two different plate theories: the Classical Plate Theory (whose hypotheses are 

similar to those assumed in the Bernoulli-Euler beam theory) and the First Order Shear Deformation Theory, also 

known as the Mindlin-Reissner Plate Theory (whose hypotheses are similar to those assumed in the Timoshenko beam 

theory). Square plates simply supported in the four edges and subjected to a concentrated force in the center are 

analyzed using both formulations, for different length to thickness ratios. Some analytical results are also compared to 

finite element solutions showing a good agreement. The analytical solution shows that plates made of orthotropic 

materials have a greater influence of shear deformation than plates made of isotropic materials, mainly for those 

plates with small length to thickness ratio. 
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1. INTRODUCTION  

 

Composite laminate plates are generally made of laminas with orthotropic mechanical properties. The use of 

laminate composites made of polymers (e.g.: epoxy and polyethylene) reinforced with fibers (e.g.: carbon or graphite, 

glass and aramid) has been increasing in the aerospace, wind turbine blade and automobile structural projects (Romariz, 

2008). 

According to Abrate (1998) transversal shear stresses need to be considered in numerical simulations of thick plates, 

otherwise the numerical simulation results can be severely affected. Besides being important in the static analysis, this 

consideration also needs to be done in the impact analysis of laminate plates when high frequencies vibration modes are 

excited. In addition to that, transversal shear stresses are very important to predict delamination failure on laminate 

plates. For thin plates, Mendonça (2005) mentions that errors of 5%, or less, can be expected if a plate has a length to 

thickness ratio over 100 and the shear deformations are not considered. However, the same is not valid for plates having 

a small length to thickness ratio, since in this case the shear stresses play an important role in the mechanical behavior. 

In this article two plate theories, based on two different kinematics assumptions about the transversal shear stress, 

are investigated: the Classical Plate Theory, that does not consider the influence of transversal shear stresses, and the 

First Order Shear Deformation Theory, that does consider the shear influence on deformation results. 

The main purpose of this paper is to solve analytically a simple supported plate under a static concentrated load in 

order to show the dependence of the deformation results on the length to thickness ratio, and notice that plates made of 

orthotropic lamina materials have a greater influence of shear deformation than plates made of isotropic materials. 

 

2. STATIC LOADING IN BEAMS 

 

According to Abrate (1998), the maximum transverse displacement “w” at the center of a simply supported beam, 

subjected to a uniformly distributed static load, can be predicted using a higher-order theory as: 
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where L is the beam length, h is the beam height, q is the linear pressure load, E is the Young modulus, G is the shear 

modulus and I is the second moment of inertia of the beam cross-section. 

The second term of Eq. (1) into the brackets is the ratio between the deflection due to shear deformation and that due 

to bending. As it can be noticed, the effect of shear deformation becomes smaller as the ratio h/L is reduced. Yet, 

another important effect of shear deformation depends on the ratio between the Young modulus E and the shear 

modulus G. For isotropic materials E/G = 2(1+ν), and if we consider a Poisson ratio of ν ≅ 0.3, it results E/G = 2.6, 

which is not a high ratio. However, if we consider a typical graphite-epoxy composite (instead of an isotropic material), 

a unidirectional laminate with fibers oriented in the x-direction can provide E1/ G12 = 25.2. Therefore, at a first glance, 

we could say that the effect of shear deformation in graphite-epoxy laminate materials is almost 10 times more 

significant than that observed in typical isotropic materials. By similarity, this greater influence of shear deformation on 

displacements should also be expected in laminate plates. 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

 

 

3. CLASSICAL PLATE THEORY (CPT) 
 

In this section some useful relations related to the classical plate theory (CPT) will be briefly presented. Let  u, v, 

w be the displacements of the points of the plate in x, y and z directions respectively, as shown in Fig. 1. Also, let  u0, v0, 

w0 be the displacements at the middle of the plate (that is, the mid-plane displacements). 

 

 
Figure 1. Plate deformation. (Mendonça, 2005) 

 

The Kirchoff’s kinematical relations are adopted, as follows: 
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Therefore, the effects of shear deformations are neglected. 
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The normal stress σz is very small if compared to the stresses σx, σy , τxy. It leads to: 
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The deformation compatibility equations are given by: 

 

{ } { } { }0 zε ε κ= +  (5) 

 

where { }κ  is the plate curvature vector and { }0ε  is the deformation vector at the mid-plane points.  

Assuming that each lamina is in a plane stress state, the constitutive equation in the lamina principal directions is 

given by: 
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where: 
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If the X direction is rotated θ degrees (in the clockwise direction) from the principal direction ‘1’ of the lamina, the 

constitutive equations for each lamina are given by (see, e.g., Jones, (1999)): 
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where the matrix terms given in Eq. (8) are defined by: 
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where k = cosθ   e   l = sen θ. 

 

The forces and moments in a differential plate element are shown in Fig. 2. 

 

 
 

Figure 2. Forces and moments in a differential element. 
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Applying Eq. (5) and Eq. (8) in the generalized loads equations of the laminate plate gives: 
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where the laminate stiffness matrix are given by: 

 

[ ] [ ] [ ] ( )∑∑ ∫
=

−
=

−==

−

n

k
kkk

n

k

z

z

k zzQdzQA
k

k
1

1
1

1

 (13) 

[ ] [ ] [ ] ( )∑∑ ∫
=

−
=

−==

−

n

k
kkk

n

k

z

z

k zzQzdzQB
k

k
1

2
1

2

1 2

1

1  (14) 

[ ] [ ] [ ] ( )∑∑ ∫
=

−
=

−==

−

n

k
kkk

n

k

z

z

k zzQdzzQD
k

k
1

3
1

3

1

2

3

1

1  (15) 

where n is the number of laminas, k represents each lamina, and Q is the lamina stiffness matrix from Eq. (8). 
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The differential equation of equilibrium gives: 
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where p is the pressure applied to the plate in z direction, and I1 is the mass per unit length. 

For a symmetric lay-up, [ ]B  = [ ]0 . Then, after substituting (12) into (16), the transverse displacements must satisfy 

a single equation of motion: 
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4. FIRST-ORDER SHEAR DEFORMATION THEORY (FSDT) 
 

In this section some basic relations of the First-Order Shear Deformation Theory (also called Mindlin-Reissner plate 

theory) will be briefly given. To start with, the kinematical relations adopted in this case are: 

 

x

w
x

∂

∂
−= 0

1γψ
, 

y

w
y

∂

∂
−= 0

2γψ

 (18) 

 

Therefore, the two transverse shear strains are assumed constant through the thickness. The deformation 

compatibility equations are given by Eq. (5), besides the following equations related to the shear strains: 
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The constitutive equations for each lamina are given by Eq. (8), besides the following relation related to shear 

stresses and shear strains: 
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The shear forces in a differential plate element are showed in Fig. 3. 

 
Figure 3. Shear forces in a differential element. 

 

Applying Eq. (19) and Eq.(20) in the generalized load equations of the laminate plate, leads to: 
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where: 
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Abrate (1998) suggests that the constants c1 and c2 be assumed equal to 5/6. These constants are the equivalent 

counterparts of the correction factor for the distribution of shear stress in rectangular cross-section beams proposed in 

the Timoshenko’s beam theory.  

As described in Abrate (1998), for a symmetric layup, [ ]B  = [ ]0 . Then, after substituting Eq. (12) and (21) into the 

differential equations of equilibrium, the following three differential equations are obtained: 
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where I3 is the rotary inertia. 

 

5. NUMERICAL SIMULATION 
 

In order to compare the differences between the two approaches, a simply supported composite plate, of thickness h, 

and subjected to a concentrated load of 1N by patch load, as shown in Fig. 4.a, will be analyzed. The patch load length s 

is 2.h. The laminate plate has 10 layers. The laminate lay up is [0, 90, 0, 90, 0, 0, 90, 0, 90, 0], as show in Fig. 4.b. 

 
Figure 4. (a) Simply supported plate subjected to concentrated load. (b) Laminate lay-up and lamina directions. 

 

The lamina resin is epoxy and it is reinforced with carbon fibers. The laminate properties are presented in Tab. 1. 

 

Table 1 – Laminate properties. 

 

Symbol Value Property 

E1 120.0 GPa Elastic modulus in the lamina direction 1 

E2 7.9 Gpa Elastic modulus in the lamina direction 2. 

G12= G23= G13 5.5 GPa Shear modulus in the lamina plane 12, 23, 13 

ν12 0.3 Poisson coefficient 12. 

tlamina 0.269mm Lamina thickness 

 

In order to simplify the analyses, only square plates were considered. (see plate dimensions in Tab. 2). 
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Table 2 – Plate dimensions (a and b in meters). 

 

a = b a/h 

0,0125 4,6 

0,025 9,3 

0,050 18,6 

0,100 37,2 

0,200 74,3 

 

The boundary conditions are: 
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5.1 Analytical solutions 
 

Within the classical plate theory, the transverse displacements and the transverse load into double Fourier series are 

written by: 
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This analytical solution is called Navy solution, and it is presented in several references, e.g., Lekhnitskii (1968) and 

Timoshenko and Woinowsky-Krieger (1959). Using the Classical Plate Theory (CPT), substituting Eq. (28) and 

Eq. (29) into Eq.(17), the equations of equilibrium and the boundary conditions are satisfied when transverse 

displacements are given by: 
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where r = a/b. 
 

For a uniform pressure p distributed over a square patch centered with side s, pmn is given by: 
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Substituting the Wmn into Eq. (26), the displacements of the plate are calculated within the CPT theory. 

Based on the derivations of the Eq. (26), the curvature vector for the plate is given by: 
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Now, using the FSDT, the solution is taken in the form: 
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Substituting Eq. (33) to (35) into Eq. (23) to (25) gives three coupled algebraic equations for each combination of m 

and n values: 
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For each (m, n), the system of three equations and the coefficients Wmn, Xmn and Ymn can be solved. The displacement 

can be defined substituting these terms in the Eq. (33). The derivations of the Eq. (34) and (35) can define the plate 

curvature: 
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5.2 A Finite Element Analysis 

 
A square plate (100mm x 100mm) was meshed using laminate plate elements with 2.0 mm length. There are 2500 

elements. The 1N load was applied on the four central elements. The Fig. 5 presents the model. 

 

 
Figure 5. Laminate plate modeled with FEM,  

 

The analysis was performed with the FE code Nastran 2005. The plate theory of this code is the FSDT. 
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6. RESULTS AND ANALYSIS 
 

The center plate displacements obtained with the analytical solutions are presented in Tab. 3. The number of m and 

n were 499. 

 

Table 3- Center plate displacement from the analytical solutions. 

 

a = b a/h wFSDT wCPT (wFSDT/ wCPT -1) 

0.0125 4.6 4.32E-08 2.27E-08 90.5% 

0.025 9.3 1.38E-07 1.06E-07 30.0% 

0.050 18.6 4.87E-07 4.44E-07 9.7% 

0.100 37.2 1.86E-06 1.80E-06 3.0% 

0.200 74.3 7.30E-06 7.23E-06 0.9% 

wFSDT is the displacement with FSDT. 

wCPT  is the displacement with CPT. 

 

According to Tab. 3, the greater the plate side dimension, the least are the differences between wFSDT and wCPT . So 

as the ratio a/h increases, the influence of deformation due the shear stress decreases. This influence is less than 1%, 

when the ratio a/h is greater than 74. The influence of shear deformation for metals is less than 1% when the ratio a/h is 

greater than 10. It can be concluded that carbon-epoxy laminates are more sensible to shear deformation than metals. 

Based on Eq. (1), the greater ratio E/G of carbon epoxy (E1/G12 =21.8) compared to metals (E/G =2.6) explain this 

structural behavior. This shear deformation influence is almost 8.4 times the metallic plate one. Then, based on Tab. 3, 

this laminate can be classified thin, if the ratio a/h is greater than 74. This ratio is applied to carbon-epoxy plate 

[0,90,0,90,0]s. Other lay-up or material laminates can have different ratios a/h. It is dependent of the relation E1/G12 of 

each lamina. 

In order to validate the results obtained with the analytical analysis, a FEM analysis was made for a plate with 

dimensions a = b = 0.100 m. The center plate displacement was 1,85e-06 m. This result is similar to the FSDT 

analytical solution, confirming that the analytical solution gives good results. The FEM bending moments Mx, My and 

Mxy on plate are presented in Fig. 6. The FEM shear force resultants Qx and Qy on plate are presented on Fig. 7. 
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Figure 6. The bending moments per unit length (Nm/m) with FEM. 
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Figure 7. The shear force resultants per length unit (N/m) with FEM. 
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The FEM bending moments at center plate were compared to the FSDT analytical solution on Tab. 5. 

 

Table 5– Comparing analytic solution and FEM bending moments at center plate. 

Load FEM Analytic - FSDT 

Mx 0.478 Nm/m 0.463 Nm/m 

My 0.334 Nm/m 0.332 Nm/m 

Mxy 0 Nm/m 0 Nm/m 

 

The FEM shear force resultants near the patch boundary were compared to the FSDT analytical solution on Tab. 6.   

 

Table 6 – Comparing analytical and FEM shear force resultant at patch boundary. 

Load FEM Analytic – FSDT 

Qx (x=a/2-s/2. y=b/2) 49.48 N/m 52.34 N/m 

Qy (x=a/2, y=b/2-s/2) 42.78 N/m 48.28 N/m 

 

Figure 6 and Table 5 show that the Mx is greater than My at the center plate. As the plate is orthotropic, the 

laminate in direction X have 60% of the fibers, and in direction Y has 40% of the fibers. Consequently, there is a greater 

stiffness in X direction, and this direction is more loaded than Y direction. 

Figure 7 and Table 6 show the Qx and Qy near the boundary patch. On this region, the shear forces are higher. It is 

also noticed that the load on X direction is higher than in Y direction, due the greater stiffness of the plate on X direction. 

Similar to a beam loaded at its center, the shear force resultant Qx and Qy is asymmetric to the symmetric planes Y and X 

respectively. The FEM and FSDT load results are in good agreement as we can see from Tab. 5 and Tab. 6. The small 

differences may be attributed to the form as the load is applied to the plate: concentrated forces are applied in the nodes 

that represent the patch load in the finite element model, whereas a distributed load is considered in the analytical 

solution. 

 

7. CONCLUSIONS 

 

The displacements and stresses obtained with the analytical solution with the two plate theories (CPT and FSDT) 

give data to compare the influence of the shear deformations on laminate plates. CPT does not consider shear stress 

deformation, whereas FSDT considers a constant shear stress along the thickness of the plate. The comparisons between 

the FSDT and FEM results show a good agreement between them, indicating that the analytical solution developed in 

this paper gives acceptable results. 

It was concluded that the shear deformation influence in carbon-epoxy plates is much greater than that observed in 

metallic plates. For the latter, the shear deformation influence is less than 1% when the ratio a/h is greater than 10. For 

the carbon-epoxy laminate plate evaluated in this paper, the shear deformation influence is less than 1% when the ratio 

a/h is greater than 74. The greater influence of shear deformation in composite material plates can be explained using 

the beam high-order theory as a parallel, where it can be observed that the influence of shear deformation on 

displacements depends not only on the thickness to length ratio but also on the E/G ratio. 
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