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Abstract. The numerical study of turbulent flows is onehaf greatest current challenges on Computationaiid-I
Dynamics. In order to obtain the small turbulen@ales appearing in those types of flow using Dirdaimerical
Simulation (DNS) for high Reynolds numbers, finshme must be used, turning DNS prohibitive in tireeat time.
The Large Eddy Simulation is a promising methodplfug the simulation of turbulent flows. It is bdsen splitting
the turbulence scales through the application diltar operator in the governing equations. Aftlistoperation, the
greatest turbulence scales are directly simulated the small turbulence scales are modeled usisgbamesh model.
The application of this methodology has generateddgnumerical results on the study of many fluichasiyics
problems. Combining low computational cost and eéaglementation it has become one of the most @iamtools
among the turbulence models. The objective of theemt paper is to apply the Large Eddy Simulatr@ihodology in
a computational code based on the Finite Volumehatkto analyze the lid-driven cavity problem. Theneyal
features of the code are: applied to incompressitW®-dimensional and transient flows, the integtimn scheme for
the convective-diffusive terms is the Power-lave pinessure-velocity coupling algorithm used is $i¥MPLEC —
SIMPLE Consistent — the transient term is disceetisvith first order Euler scheme, a staggered nieslthe velocity
with respect to pressure is employed and the resukquations systems are solved with the TDMArdhgo. The
results were obtained for transitional and turbulélows in a square two-dimensional cavity, withyRads numbers
varying from 3200 to 10000, and were confrontedhWwierature data showing good agreement.
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1. INTRODUCTION

The use of computational codes for simulation atulygng of fluid mechanics and heat transfer proides
frequent on academic area and has gradually gaipgce on R&D area in industry. There are many cowialecodes
available in the market, like CFX and Fluent (ANSY8s closed codes, sometimes is difficult to inmpémt other
mathematical physical modeling. Therefore, it ipartant to develop open codes in order to allowitii@ementation
of new techniques and methodologies of simulation.

In this context, the study of transitional and tuemt flows is accompanied with a series of diffis of
computational order, due to the fact that the disimrs of the smallest turbulent eddies decreas#s iméreasing
Reynolds number, being necessary a computatioithtjgite refined to capture the smallest eddiescivincreases the
computational demand and conflicting with the catreomputational resources. Consequently, the dpwetnt and
implementation of turbulence models in open codessitnulate turbulent flows with the current comjpigtaal
resources is of fundamental importance. One ofri@st promising methodology is the Large Eddy Satiah (LES),
whose elementary principle is the separation ofttineulence eddies through the application of rfibperator. The
largest eddies are directly simulated and the sstadlddies are modeled using an appropriate subgritkl. The use of
this methodology has been very useful to studydflmechanics problems, because requires a reasosaidil
computational cost, and due to its easy implemiemtat

The main aim of this paper is to present the resaflt the implementation of the Large Eddy Simulatio
methodology in a two-dimensional code, based orfitlie volume methodology to solve general prokdenf fluids
mechanics and heat transfer. The code has beerodetleto solve unsteady incompressible flows. Theegal
characteristics of the code are: applicable toes@ problems in Cartesian coordinates, uses SIMPEBIMPLE
Consistent algorithm to treat the pressure-velocitypling, usesPower-law developed by Patankar (1980) as
interpolation scheme and TDMAT+i Diagonal Matrix Algorithmto solve the resulting algebraic equations systems
The first order Euler scheme is used for discmgisgiransient terms and the fully implicit formutati is used for
discretising the other terms.

In order to validate the code, the lid-driven sgueavity was chosen because of the large amountdtafavailable
in the literature and also because of the simplioftthe geometry and boundary conditions. Althotigé geometric
configuration is quite simple, the flow patterne anmplexes, allowing rigorous analyses of the dmevior.
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2. MATHEMATICAL MODEL

Considering a two-dimensional, incompressible, @sdy and isothermal flow of a Newtonian fluid inrt@éaian
coordinates, the continuity and momentum equati&as, (1-2), compose the system of equations ttnatrging the
lid-driven cavity problem:

ou;
—1 =0, withj=1,2 (1)
an
ou; duu; ou;

P o 10p,, 9 1M1 g6 withi=1,2and = 1,2 )
ot 0% P OX; 0% | 0X;

wherep is the fluid densityy is the kinematic viscosity, is the velocity vector components and p is theguee.
3. NUMERICAL SOLUTION METHODOLY

The finite volume methodology is used to solve flbav inside the lid-driven square cavity. Basicalthe finite
volume method consists of three mains steps. ¥irgitle domain is divided in many control volumesilding a
discrete computational mesh. In the second step,gtverning differential equations are integratedhe control
volumes and the resulting equations are discretissdlting in three algebraic equations systems alyebraic
equations systems are solved in the third step bbledary conditions are also discretised properly.

The interpolation scheme used to treat the advediffusive terms is th®ower-lawscheme (Patankar, 1980). The
SIMPLEC algorithm is used to solve the pressureaigl coupling problem and the resulting algebraguations
systems are solved with TDMAHi-Diagonal Matrix Algorithm Staggered meshes in relation to pressure arefosed
the velocity components.

4. TURBULENCE MODELING
4.1. Introduction

The turbulence phenomena has gained special atteintistudies associated to computational fluidadgits. This
focus is not justified only by the importance oftiulence for complex engineering problems, but alse to the
challenges and obstacles that constitute the naedemalysis of turbulence.

The Navier-Stokes equations are capable to représth laminar and turbulent flow if the Mach numlie less
than 15. The order of magnitude of the smalledbuient eddies, even in these conditions is largan tthe mean
molecular free path, as discussed in Lessier (1998 turbulent regime the eddies spectrum is ptapwl to RE™,
Therefore, for increasing Reynolds numbers, thgtlenf the smallest turbulence eddies decreaseaaafined grid is
required to capture these eddies. Many times, estperromputational resources are generally requoerbtain those
results. This kind of methodology is known as Dirlcimerical Simulation (DNS) of turbulence, whetktarbulent
scales are solved. Because of the prohibitive coatipmal cost, this methodology can be only useddw Reynolds
numbers.

In order to solve turbulent flows with the currenimputational resources, many methodologies has teesloped,
as the popular RANS/URANS, which are, according-évziger and Peric (2002), good models for caleutatfew
properties of a turbulent flow, such as the averfagees on a body, the degree of mixing between itvemming
streams of fluid, or the amount of a substance ki@s reacted. Due to these characteristics andedmonable
computational cost, the RANS/URANS models are \agplied to solve engineering problems in indudtmthis work,
the Large Eddy Simulation (LES) is adopted duet$oeiasy implementation and efficiency to solve cemmnd
unsteady flows, field where the RANS/URANS modeatsndt provide good results. The subgrid scale mpdgbosed
by Smagorinsky (1963) is used for modeling the sakddies.

4.2. Large Eddy Simulation

Through a filtering process, the largest flow stuwes are solved directly by the filtered transpatiations, while
the smallest structures are modeled. The LES an®& @M similar, because both methodologies allowtlinee-
dimensional unsteady solution of the Navier-Stodggations. LES still demands refined meshes toigeophysically
consistent results. However, LES makes possiblsithalation of turbulent flows for high Reynoldsmibiers using the
existent computational capacity. This characteristssociated to good results obtained for sevenaplex problems
and to its easy implementation, makes LES one@fhtbst promising methodologies to study turbuleaws (Silveira
Neto, 2000).
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4.3. Filtering Process of the Governing Equations

The filtering process decomposes the variablescionaponent that represents the largest eddies eaptesentative
subgrid component.

Appling the filter operator in the Egs. (1) and é2)d using the commutative property between ther fdnd partial
differentiation operator, the new system of equetiis:

0 [—
—\pou;)=0 3
ax; ) ©)
ou;u; D ou;
3 uj)+ ! :—iﬂ+vi 1 (4)
ot 0 P 0X; 0Xj | 0x;

Splitting the velocity components as
u; = Uj + U’j (5)

and according to the properties of the filter opmtahe non-linear convective term can be writisn

Uiy = (T +up)(T) +u) =00 +Tiuy +T50 +uid) (6)

Defining the subgrid Reynolds stress tensor, thexstress tensor, and the Leonard tensor as:

Tj = UjUj (Subgrid Reynolds Stress Tensor) (7)
Cj = ﬁ +ﬁ (Cross-stress tensor) (8)
Lj =G, —G (Leonard tensor) 9)

one can rewrite Equation (6) as:
Uin =U|UJ + |_IJ +Cij + Tij (10)

Using these new variables, the governing equatansbe written as fallow:

74
7%
v D U Ou;
ﬂ+ﬁ(ﬁlﬁj):_iﬂ+i vV ﬂ+_1 _(Tij +Cij +Lij) (12)
gt Po 9% K Ix;  I%

This is a system composed by four equations andtiwend two unknowns, the four filtered primitivakinowns
(G; e p) and the eighteen new tensorg (Cjj e Ljj). This problems can be solved by using turbuleodets.

In the next sections, it is presented the subgratiehto calculate the eddy viscosity, emphasizimg model
proposed by Smagorinsky (1963).
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4.4. Turbulence subgrid modeling

In the present work the cross-stress and the leddrasors were negleted. This hypothesis is basdte works of
Shaanaret al (1975) and Silveira-Netet al. (1993). Shaanaet al (1975) concluded that, when a second order
scheme or less is used for dicretization of theeative term, the cross-stress and Leonard tensorde disregarded.
On the other hand, when high order schemes orrsp@ctthods are used, these tensors must be cogdidéowever,
Silveira-Netoet al. (1993), have show that these two tensors candvegdirded even for third order schemes.

Using the Boussinesq hypothesis (Boussinesq, 18#igh has considered the subgrid Reynolds stesssot as a
function of the strain rate tensor of the filteredocity field and the turbulent kinetic enerdg,(as follows:

(TZVE
T :Ekglj ‘Vt[ﬂ +_JJ (13)
3 Ixj X

wherev; is the eddy viscosity, the Eqgs (11) and (12) candwritten as:.

=0 14
% (14)
ﬂ+i(uluj)=_i%+i v %+i +14 ﬂ-}i _Ekdu (15)
ot  0x; pOX Oxj| | 0x; 0% ox; 0% | 3

If the kinetic energyk) is not calculated, the modified pressupd {ncorporates the effects from the variations of
the subgrid turbulent kinetic energy in the flovdieln this case, the final governing equations are

U _ (16)
%

T o g ou;
ﬂ+i(ﬁiaj):_ia_p+i (V+Vt ﬂ+_l (17)
ot 0x p 0x  0x; oxj 0

which is the closed system of equations to be sbolire order to solve this system the eddy viscogity) must be
modeled. In the next section is presented the Sriteay (1963) model adopted in this work.

4.5. Smagorinsky Subgrid Model

The Smagorinsky model is the most popular for olingi the eddy viscosityy,, and has been developed to
simulated atmospheric flows. This model is basetherassumption of local equilibrium for the smstleddies, where
the production of the subgrid turbulent streésg (s considered equal to the dissipation raje (

O=¢ (18)

where the production of subgrid turbulent stresslmaexpressed as a function of the strain ratkeofiltered field and
the dissipation can be expressed as a functiomeofelocity and the subgrid characteristic length,

0 =-UujSj =21§;§; (19)
£ =—¢; (Uju] 2210 (20)

The subgrid eddy viscosity, , is considered to be proportional to these twdescas follows:
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— 2|5
v =(Cst)§ (22)

whereCsis Smagorinsky constant, is the scale length, calculated as a functiomefdiscretised mesh, avﬁ is the
absolute value of the strain rate tensor, defireed a

S/ = (255 ) (23)
where §; is given by:

o Ou;
Sj -1 aﬂ.,._l (24)
2\ 0x; 0

The scale lenghf can be calculate by:

0= (axmay)Y2 (25)
An effective viscosityVes, can be defined as:

Vef =Vt TV (26)

The Smagorinky constant§) has a value of order 0.1. For isotropic and hognogs turbulence, Lilly (1967) has
analytically determined thats = 0.18. Actually, the value of this constant dependsthe characteristics of the
computational code and on the grid used in the lsitiam, and should be adjusted for each probleme Ohthe
inconsistencies of the Smagorinsky model is theestamation of the eddy viscosity near the walfgaally in the
boundary layer. For many cases the use of a fumttioeduce the eddy viscosity in that region camécessary.

5. CONFIGURATION OF THE NUMERICAL SIMULATIONS
The study of the lid-driven square cavity problemaistandard test used to validate numerical cddes.problem
is characterized by simple geometry and boundangitions, but presents complex flow patterns. Tfuees it is a

very useful problem to analyze the quality of teenputational code. Figure 1 shows a scheme ofidhgriven square
cavity as well as the used boundary conditions.

u=U, v=0

\ 4

u=v=0 u=v=0

L.

X u=v=0

Figure 1. Scheme of the lid-driven square cavity boundary conditions.

The problems was simulated for Reynolds numbergimgrfrom transition to the turbulent regimes, witie
Reynolds number based on the height of the cavity @ the prescribed velocity U. Simulations fowI&eynolds
numbers were not presented in this work once tlde tas already been validated for the lid-driveuasg cavity using
DNS, with excellent results, as can be seen in igods and Gasche (2008).
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A maximum mass residue over the entire domainttess 10'° was used as a convergence criteria.

6. NUMERICAL RESULTS
For evaluating the results of the flow in the lidven cavity, it is performed an analysis of thendnsionless
velocity profiles u/U and v/U. The problem was slated for the following Reynolds numbers: 3.2%18x1G, 7.5x16

and 10. The Smagorinsky constant adjusted for each stionlaase is presented in Tab. 1.
Table 1. Smagorinsky constant adjusted for eachlation.

Re Cs
3200 0.18

5000 0.18

7500 0.30
10000 0.30

The results were confronted with the data obtalmeGhiaet al. (1982) who used a mesh configuration of 257x257

volumes. The same configuration for the computatiomesh was adopted in this work for purposes ofgarison.
Figures 2 to 5 present the dimensionless velociilps obtained for Reynolds numbers of 3.2%Bx1C, 7.5x16

and 10, respectively.
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Figure 2. Dimensionless velocity profiles for R8200.
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Figure 3. Dimensionless velocity profiles for R&G00.
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Figure 5. Dimensionless velocity profiles for R&G000.

These figures show that the velocity profiles hgued agreement with data from Geal. (1982), showing good
consistence of the implemented turbulence moded fMlest significant deviations is founded in theigegof large
gradients, and for the highest Reynolds numberss. ddwviation is probably caused by the interpotafimnction used to
treat the advective-difusive terniBdwer-law), which is quite efficient, but presents significamumerical diffusion. In
addition , the Smagorinsky model, overestimateeithdy viscosity near the walls, introducing excesdiffusivity in
these regions, contributing to the deviation oftabcity profiles.

Figures 6 to 9, present maps for velocity vectexddy viscosity and pressure obtained for the saeyn®tds
numbers.

N

0.2 0.4 0.6 0.8 0.4 0.6 . 0.2 0.4 0.6
X-Axis

X-Axis X-Axis

@) (b) ()

Figure 6. Maps of (a) velocity vector, (b) eddycdsity and (c) pressure field for Re = 3200.
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Figure 7. Maps of (a) velocity vector, (b) eddycdsity and (c) pressure field for Re = 5000.

=g —

S

Figure 9. Maps of (a) velocity vector, (b) eddycdsity and (c) pressure field for Re = 10000.

Observing the maps of velocity vector one can nthiedarge central vortex characteristic of thisdkof flow, and
the evolution of the secondary recirculation’s @thbinferior and superior left corners.

As can be observed on the maps of eddy viscobigyyalues of the eddy viscosity increase for insirepReynolds
numbers, once it is proportional to the strain itéhe flow.

7. CONCLUSIONS

The development of the present work focuses omtipiementation of the Large Eddy Simulation metHodg for
turbulence modeling, using the subgrid model predosy Smagorinsky (1963) in an existent computati@ode
constructed for solving general flow problems udimg finite volume method. The code with the tuemage model was
validated for the lid-driven square cavity flow ptem.

The problem was simulated for Reynolds numbersingrfrom the transitional to turbulent regimes. Tesults
presented excellent agreement with the data from &tal (1982) for Reynolds numbers until 5X1@resenting larger
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deviation for 7.5x1® This deviation is attributed partially to thedrpolation scheme for the advective-difusive terms
(Power-law), and to the subgrid model, which overestimateeithdy viscosity near the walls.

The obtained results showed that the computaticodé works well for transitional and turbulent flown lid-diven
cavities using the turbulence model implemented,@m be tested in future studies of other problems
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