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Abstract. Damage detection and structural integrity monitoring are important subjects to automotive, naval and 
aerospace industries. These topics have received great attention in the last decades. To investigate damage a new 
method based on mechanical energy flow and spectral element method is proposed. Spectral element method consists 
in a frequency domain exact analytical solution of the wave equation, using displacement formulation, tailored with the 
finite element method matrix ideas. In this new method a cracked beam spectral element is evaluated based on its 
mechanical energy flow propagation. The beam element is excited by a pulse force to evaluate the effect of signal 
nature to the wave propagation process. Changes in energy density and energy flow related to crack depth and 
position are observed for different cases of healthy and cracked beams. Simulated results are evaluated and discussed. 
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1. INTRODUCTION 
 

Currently, in the development of structural projects, investigation to control excessive noise and vibration levels has 
been done aiming to provide a safe and comfortable environment. The modern industry continually searches for new 
engineering tools in order to increase human life safety and quality. Better tools to predict noise and vibration are 
needed to control these phenomena and provide ideal work conditions. A difficult issue in this area relates with the 
energy vibration path identification and how it propagates through the structure. Identifying correctly these paths can 
give manners to control the vibration. 

In the past, damage detection was done mainly by visual inspection; most recently new technologies have been 
developed in order to facilitate the damaged structure diagnostic without visual perception. A crack presence in a 
structure introduces local flexibility changes that affect its vibration response (Dimarogonas, 1996). Then, vibrational 
energy can be used to investigate the healthy condition of a structure. Recently damage detection researches are 
concentrating on methods that use elastic wave propagation at medium and high frequencies (Pereira at al., 2008; 
Palacz and Krawczuk, 2002; Krawczuk at al., 2002; Krawczuk, 2002).  

Finite Element Method (FEM) became a well-established numeric prediction tool on structural vibration. It is 
effective to low frequency analysis, but at medium and high frequencies it produces an inherent problem to generate 
huge computational models. Statistic Energy Analysis (SEA) is an energy method, which has been applied successfully 
to solve problems at high frequency. Proposed by Lyon (1995) in the 60’s it consists in dividing the structure in a set of 
subsystems that interacts between them through the energy exchange. However, the spatial variations within each 
subsystem cannot be obtained because it provides only one energy level to each subsystem. 

Spectral Element Method (SEM) was proposed by Doyle (1997) and consists in the exact displacement wave 
equation analytical solution at frequency domain. Since the spectral element is the exact analytical solution it is 
equivalent to an infinite number of finite elements. This characteristic and the spectral domain make the spectral 
element more flexible to present the spatial variation of vibrational energy. In this work a damage detection method 
using the cracked beam spectral element presented by Krawczuk (2002) is extended to obtain the mechanical energy 
density and flow instead of displacement, as considered in its original formulation. At high frequency the displacement 
is relatively small not revealing as the best alternative for crack detection. Then, this work proposes an alternative 
evaluation for damage detection through the mechanic energy density and flow in a cracked beam spectral element. 

The simulated examples use a spectral element for the flexural vibration problem based on the Bernoulli-Euler beam 
theory. A cracked beam spectral element was implemented and analyzed in terms of mechanical energy propagation 
throughout its length. The energy change is evaluated in terms of its density and flow as a function of the crack depth 
and length position. Different cases of the damaged beam are investigated. The results are compared with those 
obtained for a healthy beam. The beam element is excited by a pulse force in order to determine the nature of the signal 
process for the wave propagation. The simulated results are presented and the main divergences are discussed. 
 
2. BASIC THEORY  
 
2.1. Healthy beam spectral element 
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Bernoulli-Euler theory considers the beam as a long, narrow structure with loads applied transverse to the centerline. 
It is assumed also that transverse displacement and rotation are small. Although the theory assumes transverse shear 
force, the shear deformations are neglected. On the basis of these preamble the differential equation of movement in its 
spectral form can be obtain as (Doyle, 1997): 
 

Fvk
dx

vd
=− ˆˆ 4

4

4
, (1) 

 
where ^ indicates the function Fourier transform, v is the transversal displacement, F is the external force and k is the 
wave number given by:  
 

IESk ρω 22 ≡ , (2) 
 
where ω is the circular frequency, E is the Young’s modulus, S is the cross-section area, ρ is the density and I is the 
inertia moment. The homogeneous solution of Eq. (1) can be written as: 
 

( ) ( )xLkxLkixkxki eDeCeBeAxv −−−−−− +++= 2121)(ˆ , (3) 
 
where A, B, C and D are arbitrary constants determined by boundary conditions, L is the beam length, and the wave 
numbers are given by kk ±=1 and ikk ±=2 . 

Figure 1 shows a two-node elastic beam spectral element subject to dynamic forces in both nodes. A damping term 
is introduced into formulation by using a complex Young’s modulus, Ec=E(1+iη), where η is the hysteretic loss factor 
structural damping. 
 

 
 

Figure 1. Two-node healthy beam spectral element. 
 

From Figure 1, the nodal displacements and rotations in the beam ends can be written as: 
 

1ˆ)0(ˆ vv ≡ ,  1
ˆ)0(ˆ φ≡φ ,  2ˆ)(ˆ vLv ≡   and   2

ˆ)(ˆ φ≡φ L . (4) 
 

From the Eq. (4) and Eq. (3) the coefficients, A, B, C and D can be calculated. Substituting again in the Eq. (3) the 
expressions founded to calculate the displacements and the rotations in any written arbitrary point of beam are written 
in the following form: 
 

( ) ( ) ( ) ( ) 24231211
ˆˆˆˆˆˆˆˆ)(ˆ φ++φ+= xgvxgxgvxgxv , (5) 

 
where ( )xgiˆ  are form functions, which are omitted here for conciseness, but can be found in Khaled, 2001. The nodal 
loading and dof’s are related by the following expressions: 
 

2

2 ˆ
)(ˆ

dx
dEIxV φ

−= ,     
dx
dEIxM φ̂)(ˆ = . (6) 

 
Applying the boundary conditions on the beam element (Fig. 1) the following matrix equation is obtained: 
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where [Ω] is the healthy beam Bernoulli-Euler element dynamic stiffness matrix, which is a symmetrical matrix (4x4) 
and in general is complex. 

For a harmonic excitation the time averaged flexural energy density in a beam is the sum of the time averaged 
potential energy density and the time averaged kinetic energy density, given by: 
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where  and ∗ denotes the time averaged quantity and complex conjugate, respectively. The time averaged energy 
flow consists of two terms: one term due to bending moment and the other due to shear force, given by: 
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where ℜ is the real part of a complex number. 
 
2.2. Cracked beam spectral element 
 

Figure 2 shows a spectral element beam with a transverse open and non-propagating crack, presented for Krawczuk 
(2002). The crack is modeled by a dimensionless local flexibility, θ, which is calculated by using Castigliano’s theorem 
and the laws of fracture mechanics (Tada, at al, 1973). 

 

 
 

Figure 2. Two-node cracked beam spectral element. 
 
The general solution to the Eq. (1) applied for this element can be written in two parts: 
 
( ) ( ) ( )xLkxLkixkxkil eDeCeBeAv −−−−−− +++= 121121 1111ˆ        ]0[ 1Lx ≤≤ , (10) 

 
( ) ( ) ( ) ( )( ) ( )( )xLLkxLLkixLkxLkir eDeCeBeAv +−−+−−+−+− +++= 12111211 2222ˆ       ]0[ 1LLx −≤≤ , (11) 

 
where ( )lv̂  and ( )rv̂  are the displacement element at left and right hand of the crack, respectively. The constants, A1, 
B1, C1, D1 and A2, B2, C2, D2 are determined by: a) the displacement boundary conditions: 

 
( )( ) 1̂0ˆ vv l = ,      ( )( ) 1̂0ˆ φφ =l ,     ( )( ) 21 ˆˆ vLLv r =− ,  and   ( )( ) 21

ˆˆ φφ =− LLr ; (12) 
 

b) the displacement compatibility conditions at the crack position: 
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and c) the moment and the shear force equilibrium relationships at the crack: 
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By applying displacement boundary conditions to the element ends, and the displacement compatibility and force 

equilibrium to the crack position, the matrix equation is obtained: 
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where [Ωc] is the dynamic stiffness matrix for the cracked beam spectral element. 
 

From Castigliano’s theorem, the flexibility at the crack location for the one-dimensional beam spectral element can 
be obtained by (Krawczuk, 2002): 
 

2

2

Q
Uc

∂

∂
= . (16) 

 
where U is the elastic strain energy due the crack and Q is the nodal force on the element. By considering that only 
crack mode I is present in the beam element, the elastic strain energy can be expressed as: 
 

∫
−

=
cS cI dSK
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U 2
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, (17) 

 
where ν is the Poisson’s ratio, Sc is the cracked area and KI is a stress intensity factor corresponding to the crack mode I, 
which can be represented by: 
 

( )hf
bh

MKI ααπ= 2

ˆ6
, (18) 

 
where M̂ is bending moment at cracked position, α is the crack depth variation (Fig. 3), h and b are the cross section 
dimensions, and f(α/h) is a correction function given by 
 

( ) ( ) ( ) ( )[ ]
( )h

hh
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From Figure 2 and with some simple transformations, the local flexibility coefficient of the cracked spectral element 

can be rewritten as: 
 

( ) αααπ df
bhE

c
a
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2
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, (20) 

 
where haa = , hαα = . The dimensionless local flexibility is obtained from Eq.(20) as, LEIc=θ . 
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Figure 3. Cracked beam cross-section at crack position. 
 
 
3. NUMERICAL RESULTS 
 

In order to observe the vibration energy behavior of healthy and cracked beams, some numerical tests were done. 
For all tests an aluminum beam (E=71.0 GPa, ρ = 2700.0 kg/m3

 and η = 0.03) with length L = 4.0 m, rectangular cross-
section (b = 0.02 m e h =0.02 m), and free-free boundary conditions was used. The beam was excited in the left end 
with a pulse force. Two types of pulse were generated to show the influence of signal in the wave propagation and the 
possibility to localize the crack. Pulses are obtained with a sinusoidal force modulated by a triangular window. Pulse 1 
and 2 were obtained by sine functions with amplitude of 1.0 kN and frequency of 20.0 and 40.0 kHz, respectively. Sine 
functions were generated with 200 points and the triangular window includes 5 periods. Figure 4 shows the two pulses 
generated in time and frequency domain. 
 

(a) 
 

(b) 
 

Figure 4. Excitation pulse forces: (a) Pulse 1 (fc = 20 kHz) and (b) Pulse 2 (fc = 40 kHz). 
 
For the damage localization it is important to observe changes between damaged and healthy responses. Figure 5 

shows a healthy beam acceleration response in different instant times, excited by Pulse 1 and 2. It can be observed in 
both results the characteristic flexural wave propagation behavior, which goes reducing the amplitude throughout the 
beam length due to the internal damping, with reflection waves at ends due free-free boundary conditions. Also, it can 
be seen that Pulse 1 generates a wave phase velocity greater than Pulse 2. Figure 6 present similar results for a cracked 
beam, with the crack position at L1 = 0.4L and dimensionless crack depth a/h = 0.05, excited by Pulse 1 and 2. It is 
possible to observe that in the crack position the incident wave is dividing in two others, one propagative and another 
reflective. These results agree with ones presented by Palacz and Krawczuk (2002) and it confirms the great potential of 
wave propagation methods for damage detection. 

To verify the accuracy of cracked beam spectral element a comparison between healthy and cracked elements was 
conducted for an almost negligible dimensionless crack depth. Figure 7 shows the energy density and flow for a healthy 
and cracked beam elements with the crack position, x = 0.4L, and the dimensionless crack depth, a/h = 0.0001. The 
beam is excited in the left end with Pulse 1. The analyses are performed with two-node spectral elements and the energy 
density and flow are obtained by interpolating along element length with the discretization of 0.01 m. Results of energy 
density and flow presents a very good convergence of cracked model to the healthy model. 
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(a) (b) 

 
Figure 5. Healthy beam acceleration response excited by: (a) Pulse 1 (fc = 20 kHz) and (b) Pulse 2 (fc = 40 kHz). 

 

 
(a) (b) 

 
Figure 6. Cracked beam acceleration response, with L1 = 0.4L and a/h = 0.05, excited by: (a) Pulse 1 (fc = 20 kHz) 

and (b) Pulse 2 (fc = 40 kHz). 
 

 
(a) (b) 

 
Figure 7. Healthy and cracked beams with a negligible crack depth (a/h = 0.0001 and L1 = 0.4L) excited by Pulse 1: 

(a) Energy density and (b) Energy flow. 
 

Figure 8 shows the energy density and energy flow for a healthy and cracked beam with the crack position x = 0.4L 
and dimensionless crack depth a/h = 0.2. The beam is excited in the left end with Pulse 2, and the results are obtained 
by interpolating along element length with the discretization of 0.01 m. Results show that energy density (Fig. 8a) 
presents a characteristic oscillatory behavior of flexural waves, while the energy flow is smooth (Fig. 8b). Also, the 
energy density and flow decrease throughout the beam length due to internal damping. Furthermore, in the cracked 
beam, there is a clear indication of the crack position and crack depth amount. 
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(a) 

 
(b) 

 
Figure 8. Healthy and cracked (L1 = 0.4L and a/h = 0.2) beams excited by Pulse 2: (a) Energy density and (b) 

Energy flow. 
 

Figure 9a shows the energy density and flow changes for healthy and cracked beam with L1 = 0.4L and a/h = 0.05; 
0.10; 0.2; 0.35 and 0.45. It is observed that energy density presents good sensitivity to localize the crack to all crack 
depth values, while energy flow starts to become sensitive to values greater then a/h = 0.05. Figure 9b shows the 
variations of energy density and flow for healthy and cracked beam with L1 = 0.4; 1.2; 2.0; 2.8; and 3.4 m and 
dimensionless crack depth a/h = 0.2. The general behavior of energy density and flow are similar to the case before. 
Since that crack depth is a sensitive value (a/h ≥ 0.05) the variation of the energy density and flow as function of the 
crack position always locates the crack. 
 

(a) 

(b) 
 

Figure 9. Energy density and flow for healthy and cracked beam with: (a) L1 = 0.4L and a/h = 0.05; 0.10; 0.2; 0.35 
and 0.45 and (b) L1 = 0.4; 1.2; 2.0; 2.8; and 3.4 m and a/h = 0.2. 
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4. CONCLUSION 
 

In this work the Spectral Element Method was used for damage detection in beam type structures and was extended 
to obtain a solution in terms of energy density and energy flow instead of displacement. A beam cracked spectral 
element was implemented and analyzed in terms of mechanical energy propagation along its length. The beam element 
is excited by two pulse forces to determine their influences on the nature of the signal process of wave propagation and 
its capacity to localize a crack. The simulated results of energy density demonstrate that the model presents good 
sensitivity to crack localization for all analyzed values of crack depth, while energy flow is less sensitive. However, 
since dimensionless crack depth is superior to 0.05, the energy density and energy flow always will localize the crack. 
This alternative form to present the results as energy density and energy flow is of bigger easiness for the results 
interpretation. 
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