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Abstract. The use of artificial neural networks for prediction of surface roughness in machining processes has been the 

subject of several research works in recent years. Even in such a specific niche of literature, considerable difference 

can be detected in terms of definition of network architectures, training algorithms, error measures, results validation, 

and others. Furthermore, the reading of individual papers does not provide a clear and panoramic view of the 'state-

of-art' of the research. This work aims to review a number of studies dealing with the subject and to summarize the 

findings. The review included a set of comparison criteria as well as the observance of requirements regarding 

validation of conclusions obtained. Trends among the different works are identified and the main differences 

highlighted. The result of the evalution points out to under-explored issues for future research and reveals 

opportunities for improvement in the validation of the results obtained. 
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1. INTRODUCTION 

 

Surface quality is an essential consumer requirement in machining processes because of its impact on product 

performance (Tamizharasan et al., 2006; Ambrogio et al., 2008). Basheer et al. (2008) affirm that characteristics of 

machined surfaces have significant influence on the ability of the material to withstand stresses, temperature, friction 

and corrosion. The need for the products with high quality surface finish keeps increasing rapidly because of new 

application in various fields like aerospace, automobile, die and mold manufacturing (Sharma et al., 2008) and 

manufacturers are required to increase productivity while maintaining and improving surface quality in order to remain 

competitive (Karpat and Özel, 2008).  

A widely used surface quality indicator is surface roughness (Özel and Karpat, 2005; Benardos and Vosniakos, 

2003). High surface roughness values decrease the fatigue life of machined components (Benardos and Vosniakos, 

2002). The formation of surface roughness is a complex process, affected by many factors like tool variables, workpiece 

material and cutting parameters (Tamizharasan et al., 2006). According to Karpat and Özel (2008) the complex 

relationship among the parameters involved makes it difficult to generate explicit analytical models for hard turning 

processes. 

As cited in Tamizharasan et al. (2006), even in hard turning most of process performance characteristics are 

predictable and, therefore, can be modeled. These models, obtained in different ways, may be used as objective 

functions in optimization, simulation, controlling and prediction algorithms. Al-Ahmari (2007) sustains that 

machinability models are important for a proper selection of process parameters in planning manufacturing operations. 

A better knowledge of the process could ultimately lead to the combination or elimination of one of the operations 

required in the process, thus reducing product cycle time and increasing productivity, as stated by Singh and Rao 

(2007). 

Among the strategies employed for modeling surface roughness, methods based on expert systems are very often 

employed by researchers. Benardos and Vosniakos (2003), in a review about surface roughness prediction in machining 

processes, pointed that models built by means of artificial intelligence (AI) based approaches were more realistic and 

accurate in the comparison to those based on theoretical approaches. AI techniques, according to the authors, “take into 

consideration particularities of the equipment used and the real machining phenomena” and are able to include them 

into the model under construction. Several works make use of artificial neural networks (ANNs) for surface roughness 

prediction. It can be seen as a „sensorless‟ approach for estimation of roughness (Sick, 2002), where networks are 

trained offline with historical or experimental process data and then employed to predict surface roughness. As pointed 

out by Coit et al. (1998), neurocomputing suits modeling of complex manufacturing operations due to its universal 

function approximation capability, resistance to the noise or missing data, accommodation of multiple non-linear 

variables for unknown interactions and good generalization capability. For Balestrassi et al. (2009) “the main reason 

for this increased popularity of ANNs is that these models have been shown to be able to approximate almost any 

nonlinear function arbitrarily close”. 
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This article reviews a group of research works dealing with surface roughness prediction by means of artificial 

neural networks. It is an attempt to identify trends in literature, as well as to evaluate the compliance of the works to 

some requirements in the research involving artificial neural networks (Sick, 2002; Bishop, 2007; Haykin, 2008). The 

work is organized as follows: a brief introduction on surface roughness and neural networks is presented; selected 

papers are classified based on characteristics such as year of publication, network architectures employed, inputs and 

output utilized; a survey on model building strategies is conducted; finally, an evaluation on the methodology and a 

discussion on the results provided by the articles is performed. A direct comparison of the results is not conducted, since 

quite different approaches and experimental conditions are employed and different criteria for results evaluation are 

adopted. The goal is to provide useful information to the reader on the current status of the research, on commonly 

employed strategies and on opportunities of research quality in the field. 

 

2. SURFACE ROUGHNESS 

 

Surface roughness refers to deviations from nominal surface from third to sixth order (Benardos and Vosniakos, 

2003). Deviations from distinct order are superimposed to form the roughness profile (Benardos and Vosniakos, 2002). 

Theoretical models for maximum roughness exist in literature (Whitehouse, 1994; Krar, 2005). Those models, however, 

do not take into account any imperfections in the process, such as tool vibration or chip adhesion, as told by Sharma et 

al. (2008). In some cases, practical results diverge from theoretical predictions (Zhong et al., 2006); Fredj and 

Amamou, 2006). 

For Karpat and Özel (2008), the complex relationship among the parameters involved makes it difficult to generate 

explicit analytical models for hard turning processes. The authors sustain that surface roughness is mainly a result of 

process parameters such as tool geometry and cutting conditions. Singh and Rao (2007) affirm that the formation of 

surface roughness is a complex process, affect by many factors as tool variables, workpiece material and cutting 

parameters. Cus and Zuperl (2006) suggested empirical models (linear and exponential) for surface roughness as a 

function of cutting speed, feed and depth of cut. 

 

3. NEURAL NETWORKS 

 

According to Haykin (2008), an artificial neural network (ANN) is a distributed parallel systems composed by 

simple processing units called nodes or neurons, which perform specific mathematic functions (generally non-linear), 

thus corresponding to a non-algorithmic form of computation. In its most basic format, an artificial neuron is an 

information processing unit composed of: a set of synapses, each one characterized by a weight value; an adder, 

responsible by summing the input signals properly multiplied by the weight values in the synapses; and an activation 

function. In an artificial neural network, the knowledge about a given problem is stored in the values of the weights of 

the synapses that interconnect neurons in the layers of the network. An activation function defines the output of a 

network node in terms of the level of activity in its inputs (Haykin, 2008). 

The ability to learn by means of examples and to generalize learned information is, doubtless, the main attractive in 

the solution of problems using artificial neural networks, according to Braga et al. (2007). It is a main task of a neural 

network to learn a model from from its surrounding environment and to keep such a model sufficiently consistent to the 

real world so as to reach the goals specified for the application it is intended to perform. The use of neural networks in 

solving a given problem involves determining the design parameters of the network, a learning phase and a test phase, 

during which the performance of the network is assessed (Haykin, 2008). Figure 1 shows, as an example, a multilayer 

perceptron (MLP) network.  

 

 
Figure 1: Multilayer Perceptron ANN structure 
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The ANN has three types of layers, namely, the input layer, the output layer and one or more hidden layers, located 

between the input and output layers. The number of hidden layers is usually one or two. Each layer consists of neurons, 

and the neurons in two adjacent layers are fully connected, while the neurons within the same layer are not connected. 

In this example, the output layer has just a single neuron. Each neuron in the input layer is designated to an attribute in 

input data, and produces an output which is equal to the (scaled) value of the corresponding attribute. For each neuron 

in the hidden or output layer, the following input–output transformation is employed: 

 
H

h

ohh wuwfv
1

)

 (1) 

 

In Eq. 1 v is the output, H is the total number of neurons in the previous layer, uh is the output of the hth neuron in 

the previous layer, wh is the corresponding connection weight, w0 is the bias (or intercept). f is the nonlinear 

transformation function (or activation function) employed to process data. 

 

4. CHARACTERIZATION OF THE WORKS REVIEWED 

 

Many authors argue in favor of neural networks for prediction tasks in machining. For Quiza et al. (2008) traditional 

regression methods present severe limitations for hard turning applications, due to the extreme non-linearity that 

characterizes the process and to the use of modern tool materials. Some works, however, report drawbacks in using 

ANNs for prediction. Ambrogio et al. (2008) points the need for large amount of data points for training and validation 

as a limiter for the application of neural networks in machining processes. Bagci and Işik (2006) declare that ANNs 

models require greater computational effort when compared to RSM models. Comparisons between neural network 

based models and models obtained by other techniques present mixed results. 

In order to form a synthetic picture of the current status of the research in the field, a series of papers dealing on the 

subject were collected and reviewed. The following criteria were adopted for selecting reviewed articles: 

 Papers aiming to develop models to predict surface roughness in machining processes; 

 Papers using neural networks to develop a roughness model; 

 Papers employing historical or experimental data collected from the process to train and test networks; 

Based on these criteria, 45 research works, compliant with the enounced requirements, were selected and reviewed. 

The year of publication of the reviewed works is depicted in Fig. 2. 

 

 
Figure 2. Yearly distribution of publications reviewed 

 

The machining process under scrutiny in the publications reviewed is displayed in Fig. 3. In that figure AFM stands 

for abrasive flow machining, EDM stands for electrical discharge machining, ECM stands for electrochemical 

machining. It can be seen that turning accounts for about 42% of the total. The reasons for this prevalence might lie in 

the fact that it is a “process less complex than other processes with defined cutting edges (such as drilling or milling) 

because only one cutting edge is involved”, as stated by Sick (2002). 

As seen in Fig. 4, networks of MLP architecture are by far the most employed ones. They can be found in 39 works 

(roughly 87% of the total). RBF is adopted in eight publications (around 18% of the publications). Performance 

comparisons between those architectures are conducted in Tsai and Wang (2001), Cus and Zuperl (2006), for example. 
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In Sarma and Dixit (2007) they are used in conjunction. Networks of unsupervised learning paradigms are hardly 

employed along the reviewed works. While MLP and RBF (examples of supervised and hybrid learning paradigms, 

respectively) are employed in the vast majority of the papers, only in three publications the use of unsupervised learning 

networks is verified. In Balic (2004), Self Organizing Maps (SOM) are employed as part of a bigger network array to 

generate part-programs for milling and drilling on machining centers. The use of polynomial networks for roughness 

modeling is proposed by Chang and Lu (2006) for side milling operations, and by Ali-Tavoli et al. (2006), for use in 

AFM. Unsupervised networks are recommended by Neurocomputing theory for pattern recognition and data clustering 

in situations where classes are unknown. The applicability of unsupervised network paradigms, in special architectures 

such as SOM or ART (Adaptive Resonance Theory) for roughness classification remains an underexplored branch of 

literature. 

 

 
Figure 3. Number of publications dealing with specific processes along publications reviewed 

 

 
Figure 4. Network architectures employed by publications reviewed 

 

In the studies that employ networks of MLP architecture approximately 56% make use of the back-propagation 

training algorithm (Rumelhart et al., 1986). The applicability of other network paradigms or algorithms for roughness 

prediction has not been fully explored in literature. It is also worth noting that in those studies employing networks of 

MLP architecture, 13 make use of the hyperbolic tangent sigmoid activation function. In 8 works, the log-sigmoid 

activation function is chosen and in 19 publications, the choice of activation function is unclear. 

 

5. MODELING STRATEGIES 

 

It can be observed that roughness average (Ra) is by far the most employed figure to measure surface roughness, 

appearing in approximately 91% of the total. Ra is defined as arithmetic average value of the departure of the profile 
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from the centre line throughout the sampling length. Although the main goal of the reviewed papers is to model 

roughness, some of them also employ ANNs to predict other parameters of interest. The neural network outputs 

employed are summarized in Fig. 5. In 29 out of 45 studies, networks of single outputs are employed. In the remaining 

ones, networks having two, three or more outputs are found. The effects of using networks of one or more outputs over 

final model accuracy were not investigated along the papers reviewed. 

 

 
Figure 5. Predicted outputs in publications reviewed 

 

All publications studied made use of more than one input to predict roughness. The number of parameters employed 

for building surface roughness models can be seen in Fig. 6. Virtually all works (43 out of 45) define clearly inputs 

employed. In only two cases actual inputs cannot be defined, although the text suggests they are based on cutting 

parameters. The modeling strategy consists in collecting data covering the experimental space in order to build a 

roughness model. In one study (Shie, 2008), the nature of inputs itself is varied, in the search for the most suitable input 

set. 

 

 
Figure 6. Number of predictors employed in publications reviewed 

 

Twenty seven works present some kind of justification for the choice of the inputs of the network. In Oktem et al. 

(2006) for instance, cutting parameters are defined into the limits fixed by the tool manufacturer. In some works, inputs 

are selected based on previous machining studies, while in others, no justification is presented at all. Figure 7 details the 

nature of inputs employed by the publications reviewed. Cutting speed, feed and depth of cut (axial or radial) are by far 
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the most employed ones. Inputs appearing only once along the papers were grouped together under the label „Others‟. 

Examples of those inputs include drill diameter, feed force, cutting force, lubrication cooling condition, among others. 

A question that could be further explored is: what is the best set of inputs in terms of roughness prediction for a given 

process? Would there be any significant change in model accuracy when a given input is added or removed? 

 

 
Figure 7. Nature of input parameters employed for model building. 

 

A neural network is selected based on the value of error figures obtained during training phase. Networks presenting 

minimum error are selected and then submitted to validation tests, when their accuracy, precision and generalization 

capabilities shall be tested using data not previously presented to the network. Distinct figures are used along the papers 

reviewed for network selection and to express the resulting model accuracy, as can be seen in Fig. 8. MSE stands for 

mean square error, RMSE stands for Root mean square error and SSE stands for sum of square errors. Even though 

figures involving square error are prevalent for selection of network architectures, mean error is used in 25 publications 

(approximately 56% of the total) in order to express the final results of the neural network models or to compare the 

performance of neural networks models to that of models obtained by other methods. In addition to that, Basheer et al. 

(2008), Çaydas and Hasçalik (2008) and Tsai and Wang (2001) use R2
 (a Pearson coefficient) as the statistical index 

employed to measure the adequacy of the neural network model. 

 

 
Figure 8. Error figures employed for network selection 

 

The approach adopted to build the training set varies along the works reviewed, as seen in Fig. 9. In 38% of the 

cases, the training set is build explicitly from results obtained experiments planned and executed according to DOE 
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(Design of Experiments) techniques. In 24% of the cases, arrangements resembling those of DOE are employed, 

although there is no explicit mention to the methodology, and no indication that DOE principles were followed during 

experiments. In some of these works the actual experimental arrangement is only suggested, and not shown explicitly, 

as in Oktem et al. (2006), where a remarkable set of 243 examples collected from cutting experiments is used. In two 

papers, cases are generated by simulation over DOE built models and in the remaining works, they are collected from 

experimentation techniques not resembling DOE. The number of cases required to train the network is explored in only 

one publication Kohli and Dixit (2005). In that work a method is proposed to establish the minimum number of training 

cases required for good performance of the networks. 

 

 
Figure 9. Approaches adopted by publications to build neural network training sets 

 

The previous discussion leaves an open question: is a DOE generated data set the most efficient way to collect 

training cases? Would another approach lead to better results, or to the same results with a smaller number of training 

cases? Another issue that has not been sufficiently investigated is: for a given experimental ensemble piece material-

tool-machine, is there a minimum number of training cases that cause ANNs to be superior to other approaches? 

Criteria adopted for stop training in the publications dealing with MLPs is distributed as follows: in 4 studies, time is 

the criteria selected; number of epochs is employed by 7 studies. The achievement of a pre-specified error limit is 

adopted in 5 publications while a compromise solution between training time and error level is adopted by 2 others. 

Finally, in fourteen publications the criteria adopted to stop training is unclear. 

In six works, as for instance in Tsai and Wang (2001) and Pal and Chakraborty (2005) network paradigms are 

compared. In Tsai and Wang (2001), six network configurations comprising MLP and RBF trained by different 

algorithms are compared. Average checking error (i. e. error in validation) and Pearson coefficient R
2
 are the figures 

compared. Although a lot of data is presented, the article points to no clear winner. In Sonar et al. (2006), performances 

of MLP and RBF networks are compared. The MLPs outperformed RBF in that study. Even though, those comparisons 

could be considered to be definitive, since a systematic effort to optimize network being compared cannot be detected in 

those works. 

In 18 publications, models obtained by means of neural networks are compared to models obtained by other 

approaches, such as multiple regression analysis or response surface methodology. Out of this number, network models 

are considered to be superior in 10 publications. Neural models performance is deemed as equal to other approaches in 

6 out of 18 works. In 2 articles the neural model is outperformed by the alternative model. 

 

6. EVALUATION OF THE NEURAL NETWORKS EXPERIMENTS 

 

In this section, the compliance of the reviewed papers with requirements regarding validation of results obtained is 

evaluated. The criteria adopted follow recommendations from Neurocomputing theory authors like Bishop (2007) and 

Haykin (2008). Another useful set of criteria adopted is the one proposed by Sick (2002) in his prolific review about the 

use of ANNs for tool wear monitoring in turning operations. 

An often reported problem with ANNs is the optimization of network parameters. Zhong et al. (2006) affirm that 

there is no exact solution for the definition of the number of layers and neural nodes required for particular applications. 

Regarding network optimization, in 42% of the papers reviewed a trial and error approach is adopted. In some cases, 

like in Zhong et al. (2006), Kohli and Dixit (2005), Sonar et al. (2006) and Pal and Chakraborty (2005), even though 

the best network architecture is determined by trial and error, the authors affirm it is an 'optimal network'. In 18% of the 
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cases, not even the best configuration is detailed, thus preventing paper results to be reproduced. The review also shows 

that in 16% of the cases only the best network is presented. In 11% of the publications optimization is dealt with in a 

strategy of varying network features one at a time. A clear disadvantage of this approach is that it is not able to detect 

interaction among factors involved. In 11% of the papers reviewed a new method for optimization is proposed. Finally, 

in 7% of the papers, network optimization is only mentioned, and the best resulting configuration presented. In those 

works, configuration parameters such as number of hidden layers, number of neurons in hidden layers or training 

algorithms are fixed with no investigation.  

One of the primary recommendations for the use of neural networks in modeling is the use of distinct sets of data for 

training and testing Haykin (2008). In 84% works reviewed the use of distinct set is clearly established. In 11% the 

same sets are used to train and to test the networks and in 5% the distinction is unclear. 

In addition to the distinction between training and test sets, the use of a third dataset as a validation set is 

recommended (Sick, 2002; Haykin, 2008). This recommendation is hardly followed in the publications reviewed, being 

found in only 17% of the papers reviewed. 

 

 
Figure 10. Topology definition approaches adopted by publications reviewed 

 

Sick (2002) strongly recommends the repetition of experiments in order to avoid random influences due to weight 

initialization and the computation of mean and variance for certain performance measures, such as the average error for 

an independent set of patterns. In only eight publications repetitions of experiments are performed for each network 

topology employed. 

The use of statistical to objectively ensure model accuracy or to compare networks with different structures, inputs 

or learning parameters is essential to sustain conclusions obtained in research with neural networks, according to Sick 

(2002). In only 10 publications, or 22% of the total, could any statistical test be detected at all. Examples of the use of 

such approach can be found in Sonar et al. (2006) and Kohli and Dixit (2005). Moreover, in a 53% of the publications 

reviewed results are expressed only in graphical format, what makes it difficult to evaluate model accuracy. 

Some papers lack basic information necessary to the reproduction of results. In some works, training and test cases 

are not provided. In Basheer et al. (2008), for instance, it is not even clear how many cases were employed as training 

and test cases. A mention on the subject of training mode employed was found in a single work dealing with MLP 

networks (Pal and Chakraborty, 2005), where batch mode is used. Finally, little attention is paid to the possibility of 

occurrence of the overfitting phenomena (Haykin, 2008), and almost no paper reports explicit tests to verify the absence 

of that condition. Techniques like pruning or regularization are hardly discussed. 

Neural networks constitute a powerful and flexible tool for function mapping. The review of the literature, however, 

allows no objective conclusion regarding the superiority or efficiency of network when applied to the task of surface 

roughness prediction. In the opinion of these authors, publications more firmly established on the neurocomputing and 

statistical grounds are critical to clarify the issue. 

 

7. CONCLUSIONS 

 

A review of several publications on the subject of surface roughness in machining processes by means of artificial 

neural networks (ANNs) was conducted. They were compared based on architecture, configuration and training of 

networks employed and also on the observance of criteria for validation of conclusions obtained. The review shows that 

most of the work in the area aims to predict average surface roughness (Ra). Cutting conditions are employed as 

network inputs in virtually all publications. Networks of single outputs are the most commonly found. 
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Most of training cases employed are the results of experiments planned according to DOE methodology, or at least 

results of experimental arrangements resembling those from DOE. Efforts to establish the minimum number of training 

cases necessary to make neural models to outperform models obtained by other approaches were not found. In the 

opinion of the author, investigations on efficient data collection techniques are research issues that could be further 

explored in literature. 

Most of the papers employ networks of MLP architecture trained by the back-propagation algorithm. The use of 

unsupervised network paradigms is extremely rare. The adequacy of such network paradigms and other training 

algorithms to the prediction task constitutes yet another possibility to be investigated. 

In many studies, only the „best‟ network configuration is presented, and optimization efforts are hardly mentioned. 

In those who attempt to find suitable configurations, trial and error is still the most frequent technique. The use of 

pruning techniques could not be found. A comparison between network optimization approaches was not mentioned.  

Most publications observe the principle of using distinct sets of data to train and the networks. The use of a third 

data set for validation, recommended by some authors as an independent measure of the generalization ability of the 

networks can be found in only a sixth of works. Techniques to avoid overfitting are not employed in many articles. 

Another important requirement, the repetition of network simulation experiments was found in less of 20% of the 

works. The use of statistical evaluation and comparison of trained networks, or to compare networks of different 

paradigms, could be found in only about a quarter of the works reviewed. There is also a lack of statistical evaluation in 

the comparison between ANN based models and those models obtained by other methodologies. 

All the aforementioned issues reveal an opportunity for improvement in research on the field. More attention, 

however, should be paid to the basic theory of connectionism, to statistical treatment required to validate results and to 

the inclusion of data necessary to reproduce them. Authors should fulfill those requirements in future research in order 

to establish their conclusions on more firm grounds and to explore the full potential of neural network on roughness 

modeling. 
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