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Abstract. Conventional Pl (Proportional-Integral) controllers are characterized with simple structure and simple design
procedures. They enable good control performance and are therefore widely applied in industry. However, in a number of nonlinear
processes cases, such as those when parameter variations take place and/or when disturbances are present, design of Pl control
system based on a multiobjective optimization approach may be a better choice. In this paper, we introduce an improved
multiobjective particle swarm optimization (IMOPSO) approach. This paper presents the design and the tuning of a PI control
through IMOPSO. Numerical simulation results of decoupled Pl control and convergence of the IMOPSO is presented and
discussed with application in a multivariable quadruple-tank process. The proposed design method is intuitive and practical that
offers an effective way to implement simple but robust solutions covering a wide range of process perturbation and, in addition,
provides good tracking performance without resorting to excessive contral.
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1. INTRODUCTION

In many fields of science, the procedure of optaticn sometimes has more than one objective, theiméed for
multiobjective optimization is obvious. One of tliectors that differentiate single objective optiation when
compared to multiobjective optimization is that tiftimum solution for multiobjective optimizatioa hot necessarily
unique. In a typical multiobjective problem optimiion (also known as multicriterion optimizatiomiss a family of
equivalent solutions that are superior to the oésthe solutions and are considered equal frompiispective of
simultaneous optimization of multiple (and possibbmpeting) objective functions. In other wordsninltiobjective
optimization there is no single optimal solutionstead, the interaction of multiple objectives g#eh set of efficient
(noninferior) or non-dominated solutions, knownRaseto-optimal solutions, which gives for the dieciamaker more
flexibility in the selection of a suitable altermnest.

The Pareto optimal solutions of a multiobjectivetimization problem often distribute very regulaily both
decision and objective space. A problem that afisens the existence of multiple optimal solutiormaever is how to
normalize, prioritize and weight the contributicsfsthe various objectives in arriving at a suitableasure. Also these
objectives can interact or conflict with each otHfer example, increasing one can reduce othetarimand this can
happen in nonlinear ways. In terms of the multiobiye optimization methods that are based on thetBalomain
usually consists of three main steps. First, aigafftly comprehensive model of the process mustéeeloped to
represent the underlying phenomena that relaténtingt and output process variables. Second, thesidacspace is
reduced to circumscribe only the set of all non-thated solutions (PD) using a sufficiently largenher of solutions.
Third, all these Pareto-optimal solutions are rankging the knowledge and preferences of an expeltcision-maker
to identify the optimum solution. The most challergstep is often the third step since it dependsuman judgment
(Renauckt al., 2007).

Most of the classical Operational Research methofd®btaining solutions or approaching the Paretntfr
(including the multicriterion decision-making meti®) focus on the first stage of ranking the objedj i.e. trying to
reduce the design space to a more easily managgematical form (since most such problems aredarcomplex to
enumerate and evaluate all the possible combiratioany reasonable time) (Khare, 2002).

For a multiobjective optimization problem, any taolutions can have one of two possibilities: onenihates the
other or none dominates the other. In generalgta of a multiobjective optimization algorithmrst only to guide
the search towards the Pareto-optimal front bud sdsmaintain population diversity in the set o tRareto optimal
solutions. The recent studies on evolutionary atlgors (Van Veldhuizemt al., 2000; Deb, 2001; Coello, 1999; Coello
et al., 2002) have shown that the population-based @gos, such as genetic algorithms, tabu searcfferdiitial
evolution, and evolution strategies, are poterd#aididates to solve multiobjective optimization lgeans and can be
efficiently used to eliminate most of the diffidels of classical single objective methods suchhassensitivity to the
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shape of the Pareto-optimal front and the necessityultiple runs to find multiple Pareto-optimadlstions (Abido,
2009).

On the other hand, most optimization problems inte® systems (Carvalho and Ferreira, 1995; Liu svahg,
2000; Liao and Li, 2002; Zambrano and Camacho, 20%ala and Coelho, 2008; Panda, 2009) involve the
optimization of more than one objective functiorhieh in turn can require a significant computatiotime to be
evaluated. In some studies this problem of evalgatnore than one objective function was treatedraes only
objective function that summarizes all objectivendtions to be optimized, as a sum of all of them dgample.
However, the limitation of this method has alredden commented in literature (Van Veldhuiztral., 2000; Deb,
2001).

In this context, a modern meta-heuristic algoritinat can be useful and effective tool for optim@atapplications
in control systems is the particle swarm optimat{PSO). PSO is a population-based approach ahsivaelligence
field that was first developed by James Kennedy Rodsell Eberhart (Kennedy and Eberhart, 1995; larerand
Kennedy, 1995). Their original idea was to simuldie social behavior of a flock of birds tryingreeach an unknown
destination (fitness function), e.g., the locatidriood resources when flying through the fieldafeh space). Due to its
fast convergence that the algorithm presents faglsiobjective optimization, PSO has been advocttdx especially
suitable for multiobjective optimization. Howevehe high convergence speed of PSO often resultsrapid loss of
diversity during the optimization process, whichviably leads to undesirable premature convergdnagcent years,
various studies have been published (Sierra andldCo2006) on multi-objective particle swarm optaation
(MOPSO) in different fashion. In MOPSO, the globptimal solutions are a set of non-dominated smhsti

This paper presents the design and the tuning obugded proportional-integral (PI) controllers thgh an
improved multiobjective PSO (IMOPSO) approach wattthing mechanism inspired on Raquel and Naval §200
These controllers are applied in a quadruple tankgss, which is a benchmark problem in controigiegroposed by
Johansson (2000). The proposed benchmark is arestitey application due to its non-minimun phasarabteristics
and for being easily built. Numerical simulatiorsuéts of PI control and convergence of the IMOPS@resented and
discussed with application in a multivariable quede-tank process.

Several researchers have investigated the problewndrolling liquid flow of a single or multipleahks (Gatzket
al., 2000; Paret al., 2005; Kharet al., 2006; Biswagt al., 2009). The quadruple-tank introduced by Johan$3000)
exhibits in an elegant and simple way complex dyinamSuch dynamic characteristics include intecaxtiand a
transmission zero location that are tunable in afoam.

The remaining sections of this paper are organ&eftbllows: in section 2, a description of quadediasink process
is detailed. Section 3 presented the fundamentatsuttiobjective optimization, MOPSO and IMOPSO apmgches. In
sections 4 and 5, the simulation results and ceimbuare presented, respectively.

2. DESCRIPTION OF QUADRUPLE-TANK PROCESS

The quadruple-tank process consists of four intemreoted water tanks and two pumps. Its inputsvar@nd v,
(input voltages to the pumps) and the outputsyarendy, (voltages from level measurement devices) (Joluamnss
2000). The quadruple-tank process can easily b&l by using two double-tank processes, which aeandsrd
processes in many control laboratories. The schiemiaigram of quadruple-tank process is presemtétgure 1.

) Q%j ) Vs
pump 1 4 Q‘\ Iy s pump 2
Vy

1

tank 3 tank 4t

tank 1 tank 2

Figure 1. Schematic diagram of quadruple-tank ece
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For this process, mass balances and Bernoulli's/lalét (Johansson, 2000):

% = —%\/Zgh1 +%i\/29h3 +%k1v1 (1)
% = ‘Z_i\/Zghz +Z—2\/29h4 + szz \Z (2)
% = —%M+%v2 )
dhy _ _%m+—(1‘ AV:)"l " @

whereA, is the cross-section of tamnka; is the cross-section of outlet hole ands the water level. The voltage applied
to pumpi isv;, and the corresponding flowkss. The parameters, y, O (0, 1) are determined from how the valves are
set. The flow to tank 1 igk;v; and the flow to tank 4 is (131 kyv; and similarly to tank 2 and tank 3. The accelerati
of gravity is denoted ag. The measured level signals &g, andk:h,. These signal represented the outputs signals
i.e., ya(t)=kchy(t) andy,(t)=kho(t), wheret is the time. The adopted sampling time in thiskmeas 1 s. The parameter
values used in this paper, as in Johansson (2a6®yiven in Table 1.

Table 1. Parameters values adopted for the quastapk process.

Parameter Unit Valueg
A, Az cm? 28
Ay, Ay cm? 32
a, az cm? 0.071
ay, &y cm? 0.057

ke Vicm 0.50
g cm/s? 981

In terms of two PI controllers, in this work is cideredK(s) with the following classical structure:

kja(s) -+ Kan(S)
K= : . |0

k(9 Kon(9) -

wheren = 2. The form ok;(s), i,j O n={1,2,...n} is given by

1
kij (s) = Kp; {1““ T, Bl;} (6)

whereKpj is the proportional gain, antj; is the integral gain. In this work, the decoupRiddesign was adopted,
where the proportional and integral gains are failli # j. The MOPSO and IMOPSO approaches must search the
parameters of a 2x2 decoupled PI, i. e., searchdreEmeter&p; 1, Kp,,, Tizy andTig,.

3. FUNDAMENTALSOF MULTIOBJECTIVE OPTIMIZATION AND THE PSO APPROACH

This section presents the fundamentals of multaibje optimization and PSO. First, a brief overvied the

multiobjective optimization is provided, and finalthe design of the MOPSO proposed by Raquel ancalN2005)
and the IMOPSO algorithm are discussed.

3.1. Multiobjective optimization

In contrast to single-objective optimization, itdssential to obtain a well-distributed and divesskition set for
finding the final tradeoff in multi-objective optimation. Multiobjective optimization can be definad the problem of
finding a vector of decision variables that sagisfconstraints and optimizes a vector function whedements represent
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the objective functions. A general multiobjectivptimization problem containing a number of objeetivio be
minimized and (optional) constraints to be sattsfian be written as:

Minimize f(X),m=1,2,...M
subject to constrairg(X) < ¢, k=1, 2, ...K

whereX = {x,, n =1, 2, ...,N} is a vector of decision variables akd= {f,, m=1, 2, ...,M} are M objectives to be
minimized (Lu and Yen, 2003).

In a typical multiobjective optimization problenmere exists a family of equivalent solutions that superior to the
rest of the solutions and are considered equal frlmenperspective of simultaneous optimization ofitiple (and
possibly competing) objective functions. Such dohg are called noninferior, nondominated, or Raogtimal
solutions, and are such that no objective can lprdued without degrading at least one of the othensl, given the
constraints of the model, no solution exist beytimel true Pareto front. The goal of multiobjectivgogithms is to
locate or approximate the Pareto front.

Each objective component of any nondominated soiuih the Pareto optimal set can only be improvgd b
degrading at least one of its other objective camepts. A vectoff, is said to dominate another vecfgrwhen the
following conditions are fulfilled in a minimizatiomultiobjective problem:

fa-< fb iff fa,i < fb,i Oi ={1,2,,M} and [j D{].,Z,,M}, where fa,j < fb,j

Summarizing, there are two goals in multiobjectigtimization: i) to discover solutions as closdhe Pareto-front
as possible, and ii) to find solutions as divers@assible in the obtained nondominated front.

Methods of multiobjective optimization can be cléisd in many ways according to different critertdwang and
Masud (1979) classify the methods according toptaeticipation of the decision maker in the solutjgmocess. The
classes are: i) methods where no articulation efgpence information is used (no-preference medhadilsnethods
where a posteriori articulation of preference infation is used (a posteriori methods); iii) methedsere a priori
articulation of preference information is used (@ methods); and iv) methods where progressit&dation of
preference information is used (interactive methods

In the context of multiobjective optimization, amportant issue related the multiobjective optim@atmust be
mentioned. A multi-objective optimization probleniffers from a single-objective optimization probldmecause it
contains several objectives that require optimiatin case of single-objective optimization probse the best single
design solution is the goal. But for multi-objeetiproblems, with several and possibly conflictirgeatives, there is
usually no single optimal solution. Therefore, thexision maker is required to select a solutiomfr® finite set by
making compromises. A suitable solution should faeyor acceptable performance over all object{®enda, 2009).

3.2. PSO algorithm for multiobjective optimization

The PSO algorithm uses a number of particles thastitute a swarmin PSO, this swarm starts with a random
initialization of a population of individuals (pates) in the search space and works on the sbehbvior of the
particles in the swarm.

These particles fly with a certain velocity anddfithe global best position after some iterationsedch iteration,
each particle can adjust its velocity vector, basadits momentum and the influence of its best tposi(pbest -
personabest) as well as the best position of its neighbotset - global best), and then compute a new position that the
“particle” is supposed to fly to. On other wordtsfinds the global optimum by simply adjusting tinajectory of each
individual towards its own best location and tovgatide best particle of the swarm at each iterasfcthe process. The
swarm direction of a particle is defined by theafgparticles neighboring the particle and its drigtexperience.

Moore and Chapman (1999) proposed the first exd@nsi the PSO strategy for solving multi-objectpreblems in
an unpublished manuscript. There have been sevecaht fundamental proposals using PSO to handlgpfeu
objectives, surveyed in Sierra and Coello (2006}hls context, the high speed of convergence irP80O approaches
often implies a rapid loss of diversity during thgtimization process. In this context, several MORtave difficulties
in controlling the balance between explorations expuloitations.

Raquel and Naval (2005) propose a multiobjectiv® RBIOPSO) incorporating the concept of nearest himg
density estimator (crowding distance factor). Thanaling distance factor is calculated based orEtingidian distance
between the particle and its neighbors and is bisethis MOPSO for selecting the global best pagtiahd also for
deleting particles from the external archive of d@minated solutions. When selecting a leader, ttohive of
nondominated solutions is sorted in descendingrondtd respect to the density estimator, and aiglarts randomly
chosen from the top part of the list. On the otieemnd, when the external archive is full, it is agsorted in descending
order with respect to the density estimator val @ particle is randomly chosen to be deletedn fitee bottom part of
the list. This approach uses the mutation operaigposed in Coello, Pullido and Lechuga (2004)uchsa way that it
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is applied only during a certain number of genersiat the beginning of the process. Finally, thén@s adopt the
constraint-handling technique from the NSGA-II (Bethal., 2002).
The procedure for implementing the MOPSO giverRadquel and Naval, 2005) is given by the followitgps:

i) Initialize a population or swarm of particlestivrandom positions and velocities in tiheéimensional problem space
using uniform probability distribution function. &e generation countdrz= 0;

ii) Evaluate the particles and store the nondorshgiarticles in swarm in an external archive
iii) Compute the crowding distance values of eachadominated solution in archive
iv) Sort the nondominated solutionsArin descending crowding distance values;

v) Randomly select the global best guide for thearsaform a specified top portion (e.g. top 10%) floe sorted
archiveA and store its position ghest.

vi) Change the velocity;, and position of the particle, according to equations:

Vi (t+D) =wivi () + ¢ [ud ([ p; (8) =% (O] +c2 [UdI[ pg (t) — % (1)] (7)
X (t+D =X ) +AtM(t+D) (8)

wherew is the inertia weighti=1,2,...N indicates the number of particles of populatiomasn);t=1,2,.. ta indicates

the generations (iterationsy,is a parameter called the inertial Weigtqt,=[v,1,v,2,...,v,n]T stands for the velocity of the
i-th  particle % =[)q1,>q2,...,)qn]T stands for the position of thei-th particle of population, and

o] :[ﬂlv nz,...,pn]T represents the best previous position ofittieparticle.

Positive constants, andc, are the cognitive and social factors, respectivelyich are the acceleration constants
responsible for varying the particle velocity todspbest andgbest, respectively. Index represents the index of the
best particle among all the particles in the swavfariablesud and Ud are two random functions with uniform
distribution in the range [0,1].

Equation (8) represents the position update, agogtd its previous position and its velocity, colesingAt =1.

vii) Perform the mutation operation proposed in &oet al. (2004) with probability of 0.5;
viii) Evaluate the particles in swarm;

ix) Insert all new nondominated solution in swainto A if they are not dominated by any of the stored tsmhs. All
dominated solutions in the archive by the new smtuire removed from the archive. If the archivdul, the
solution to be replaced is determined by the foihgwsteps: a) compute the crowding distance vabfesach
nondominated solution in the archie b) sort the nondominated solutionsAnn descending crowding distance
values, and iii) randomly select a particle froispacified bottom portion (e.g. lower 10%) which ¢goise the most
crowded particles in the archive then replace thwihe new solution. In this context, the crowdmgasure of a
particlei reflects the distribution of other particles arduhei. The smaller distance is, the more the number of
individuals surrounding is. Compared with the number of particles in adgthe crowding measure exactly
describes the relative position relation amongedéht particles;

x) Increment the generation counter,t + 1;
xi) Return to Step (iii) until a stop criterion mwet, usually a sufficiently good fithess or a maxim number of
iterations tnax In this work, the,,, value stop criterion is adopted.
3.3. The proposed | M OPSO approach
Recently, several investigations have been undemta improve the performance of PSO approachesg(&ad
Gu, 2004; Engelbrecht, 2006; Nedjah and Mourell®6). Most PSO algorithms use uniform probabilistribution to

generate random numbers (Kennedyal., 2001). However, recent design approaches usiags§ian probability
distributions to generate random numbers to upgdatie velocity equation of PSO have been propogedhiing,
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2004; Secrest and Lamont, 2003; Higachi, 2003, Krghand Coelho, 2006). In this paper, following ttame line of
study, it presents a new approach called MGPSQuSaussian probability distribution.

Generating random numbers using Gaussian diswibutequences with zero mean and unit variance hier t
stochastic coefficients of PSO may provide a gooshgromise between the probability of having a langenber of
small amplitudes around the current points (fineirtg) and a small probability of having higher aitygles, which
may allow particles to move away from the currerinpand escape from local minima.

The proposed IMOPSO approach uses social and eggtiine-variant factors (Ratnaweera and Halgam@gé4)
and an operator of velocity updating based on &itett Gaussian distribution (Coelho and Krohlind)®)0In this case
the equation (7) presented in section 3.2 is mediifor:

Y (t+D) =wivi () + ¢ fud([p; (t) = ()] +c2 [GI[ pg (t) = (1)] (9)

whereGd are numbers generated with Gaussian distributiaiange [0,1]. The updating of is given by Ratnaweera
and Halgamuge (2004):

Cy = (sz —Cz)gtt—ﬂ‘z (10)

max

wherec, andcy are positive constants.

4. SSIMULATION RESULTS

The experiments were conducted for 30 independm# to evaluate the performance of MOPSO and IMOBSO
the tuning of two PI controllers applied to the dugple-tank process. The adopted setup for the MDR&sc,;=c,=1.0
and c;=1.0, ¢,=0.4, c;=1.0 for the IMOPSO, and the range of the inertigight w is from 0.5 to 0.3 during the
generations for the MOPSO and IMOPSO approaches pdpulation size was 20 particles, stopping Goteft, sy, Of
200 generations, and external archive size equed@ The search space W&, Kp, O[-50, 50] andTi4, Ti, (J[0,400].
The total of samples to evaluate the fitness fomcis 3200 and time sampling adopted is 1 s. Ulestadilutions are
penalized with value of fitness equal to infinifehe adopted initial conditions ate = 12.6,h, = 13.0,h; = 4.8, and
h,=4.9. The Runge-Kutta was the integration methogleyed in equations (1)-(4) during the simulations.

The fitness function (minimization problem) is givey

N 2

1= 2 [ya) - (o) (1)
N 2

f2= 3 [y 20 - y200) (12)

where y, ; and y, , are the setpoints for the outputs 1 and2and y, are the outputs of process.

Simulation results were presented in Figs. 2(a) (i) showed that the non-dominated solutions sf ben of 30
runs obtained by MOPSO with 59 solutions and IMOP®Iith 290 solutions. It is observed that the IMOPSO
dominated the solutions obtained by MOPSO. Furtbeemother important information is about the mearPareto
solutions in 30 runs. In this work, the MOPSO ofrtai mean of 35 solutions and the IMOPSO obtainegnnoé 88
solutions in Pareto front.

The metric of spacingS gives an indication of how evenly the solutioms distributed along the discovered front.
The spacing of Pareto front (mean of 30 runs) of 8O was 1.5889. On the other hand, the spacing©OPISO was
5.7998. In terms of spacing, the IMOPSO maintainslatively good spacing metric and obtained aebetistribution
that the MOPSO of non-dominated solutions in Péiiretat.

A good compromise solution in terms of harmonic meéf; andf, values for the IMOPSO (with = 119.6016 and
f, = 165.5758) is presented in Fig. 3. The gaingsiabtl by IMOPSO in this case wek@,=37.8455,Kp, =-0.4821,
Ti;=239.7113 andi,= 210.4079.
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5. CONCLUSION

PSO is a powerful metaheuristic approach inspingaliiserving the bird flocks and fish schools. Récgorks
(Sierra and Coello, 2006; Abido, 2009) showed Hztic PSO algorithm can be modified to accommotthetgoroblem
formulation of multiobjective problems, which is dearch for a well extended, uniformly distributadd near-optimal
Pareto front.

In this paper, the MOPSO (Raquel and Naval, 2008)the proposed IMOPSO design presented promisisgts
to tune the decoupled PI controllers when applied tuadruple process. The IMOPSO allows the dergoef a well-
distributed and diverse solution set for Pl tunimghout compromising the convergence speed of tigerishm.
Furthermore, the IMOPSO presented competitive tegulterms of proximity, diversity, and distriboi in comparison
with the MOPSO for the studied case.

The proposed IMOPSO method is expected to be emterid other multivariable processes with parameter
uncertainties and perturbations. The aim of futuogks is to investigate the use of MOPSO and IMORB@roaches
tune model-based predictive controllers.
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