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Abstract. Recently, the investigation of synchronization aeortrol problem for discrete chaotic systems hasated
much has stimulated a wide range of research dgtiuncluding both theoretical studies and practiepplications.
This paper deals with the tuning of a proportioivakegral-derivative (PID) controller based on anpnoved particle
swarm optimization (PSO) method based on normativewledge (NPSO), a source of knowledge in cultural
algorithms, for synchronization of two identicasdiete chaotic systems subject to different ing@iditions. PSO is a
kind of a population-based algorithm and is motaehby the simulation of social behavior insteadhef survival of
the fittest individual (solutions of an optimizatiproblem). It is a population-based evolutionatyaithm. Similar to
the other population-based evolutionary algorithR§O is initialized with a population of randomw@ns. Unlike
the most of the evolutionary algorithms, each piérsolution (individual) in PSO is also associdtavith a
randomized velocity, and the potential solutionalled particles, are then “flown” through the pradh space.
Numerical simulations are given to show the effectess of the proposed synchronization method DEREP.

Keywords: optimization, swarm intelligence, particle swaoptimization, chaotic synchronization, chaotic eyss,
nonlinear dynamics, cultural algorithms.

1. INTRODUCTION

Chaos is a special feature of parametric nonlimlyaamical systems (Strogatz, 2000; Peitgéral, 2004). The
theory of chaotic dynamics has a deep impact oruaderstanding of Nature. The strength of this th@omes from
its generality, in that it is not limited to a dadlar equation or scientific domain. It should \bewed as a conceptual
framework with which one can capture propertiesystems with complicated behavior. Obviously, saceneral
framework cannot describe a system down to its imbistate details, but it is a useful and impottguideline on how
a certain kind of complex systems may be understmadanalyzed (Collet and Eckmann, 2006).

Chaos, an apparently disordered behavior thatrnstheless deterministic, is a universal phenomeimatnoccurs in
many nonlinear systems. It is featured by highlgtable motion of deterministic systems in a bouncdggon of the
phase space. High instability means that the distaf two nearby orbits increases exponentiallywithe, which is a
result of the extreme sensitivity of chaotic sysietm the initial conditions. The Lyapunov exponeqtantify this
property (Luet al, 2005).

During recent years, the problem of chaos contnal saynchronization have received considerable tttes) of
many researchers due to its great potential imi@olgical applications, leading to the developn@nhany methods.

Recent interest has peaked by the pioneering woReoora and Carroll (1990) showing that a driymal from a
chaotic system could be used to synchronize a seclo@otic system. A basic configuration for chagrschronization
is the master-slave (drive-response) pattern, wiinereesponse chaotic system must track the dhigetic trajectory.

Among various control methods, control techniquasedl on proportional-integral-derivative (PID) desusing
meta-heuristics, such as evolutionary programmidgng et al, 2008), differential evolution (Litet al, 2007),
harmony search (Coelho and Bernert, 2009a), trdmsnization (Coelho and Bernert, 2009b), and pbertswarm
optimization (Chang, 2009) have been validatedf@otic synchronization.

In this paper, the tuning of a PID controller basedan improved particle swarm optimization appho&deSO)
algorithm based on normative knowledge (NPSO) yoickronization of two identical discrete chaotisteyns subject
to different initial conditions. The normative knadge, a feature of cultural algorithms (Reynolt#94), is useful to
improve the convergence of the classical PSO.
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The PSO originally developed by Kennedy and Ebeér(i®95) and Eberhart and Kennedy (1995) is a atjoun-
based swarm algorithm. Similarly to genetic aldoris (Goldberg, 1989), an evolutionary algorithmrapph, PSO is
an optimization tool based on a population, whexehemember is seen as a particle, and each pagielgotential
solution to the problem under analysis. Each partit PSO has a randomized velocity associatet] tghich moves
through the space of the problem. However, unligeegic algorithms, PSO does not have operator, asicrossover
and mutation. PSO does not implement the survif/dahe fittest individuals; rather, it implementsetsimulation of
social behavior.

The remainder of this paper is organized as folldwssection 2, a description of a discrete PIDtauler and the
case study using chaotic systems are formulatectioBe3 presents the fundamentals of PSO and NRf@baches.
Section 4 presents the simulation results of Ptlréng and chaotic synchronization. Lastly, theaosion is provided
in section 5.

2. DESCRIPTION OF PROBLEM
2.1. PID controller

As modeled in this paper, the transfer functionPd® controller is described by the following eqoatiin the
continuouss-domain (Laplace operator)

U K;
GP|D(S)=P+I+D=£=Kp+?+KdB; ()
or GP,D(s)zKp[EhTiLE;Td B;), 2

whereU(s) andE(s) are the control (controller output) and trackirgor signals irs-domain, respectively, is the
proportional gainK; is the integration gain, ari€}; is the derivative gairi; is the integral action time or reset time and
T4 is referred to as the derivation action time @e tane.
In this context, the output of the PID controllettime domain is given by (Coelho and Bernert, 2009
t
ut) = K p (600 + K; [er)dr + K g S22 3)
0

where u(t) and e(t) are the control and tracking error signals inetimomain, respectively. Using trapezoidal
approximations for equation (3) to obtain the disercontrol law, we have (Coelho and Bernert, 2009)

u(k) =u(k -1 +K , e(k) - e(k -]+ K; E—I-I-Z—SEﬁe(k) —e(k -]+ Kd.T—ZS (k) - 2e(k 1) + e(k - 2)] , 4

whereTs is the sampling period.

Over the past 60 years, several methods for det@rqniPID controller parameters have been develofede
employ information about open-loop step resporwegxample, the Coon-Cohen reaction curve methibdranethods
use knowledge of the Nyquist curve, e.g., the Zedlichols frequency-response method (Hahgl, 2002; Cominos
and Munro, 2002; O’'Dwyer, 2006). Recently, manyimj#ation techniques have been employed to imptbeePID
controller performance. In the present work, inesrtb find the controller parameters of PID, theOP&d NPSO
approaches were used.

2.2 Nonlinear discrete chaotic system

In this study, two identical delayed discrete claeystems are considered to be synchronized ubmgroposed
PID control. The master system is given by theofeihg difference equation (Peng, 2004; Penhgl, 2004):

x(k+1)=x(k)—%x(k—m)+%x3(k—m), (5)
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wheredande are positive constants) is the delay term, arndis the master state. The delayed discrete systienitsa
decaying, oscillatory, and chaotic behavior relying settings of system parameters. On the othed,htre
corresponding slave system is described by

y(k+1) = Y(k)-%Y(k-m)ﬂ“%yg(k-m)w(k), (6)

wherey is the slave state ands the external control force that adopts the Bdbtrol of equation (4). For two identical
delayed discrete chaotic systems (5) and (6) witlcoutrolu, the state trajectories of these two chaotic systeill
quickly separate each other if their initial coratis are not the same. However, the state trajest@an approach
synchronization for any initial conditions if angppriate controller is utilized. Hence the purpo$éhis paper is to
apply the PSO and NPSO approaches to find outgtimal PID control gains such that chaos synchmtion for two
identical delayed discrete chaotic systems is &ekiie

For simplicity, the cost functioR used in the study is defined as

N N
F =3 [xK)-yk)|= X |ek), Q)
k=1 k=1

where (k) is the error signal between the master and ststes and\ is the total number of sampling. The
optimization problem involves finding* = [Ky*, Ki*, Kg*] such that theF performance index of the system is
minimized.

3. FUNDAMENTALSOF PARTICLE SWARM OPTIMIZATION

This section describes the proposed NPSO algorikirst, a brief overview of the classical PSO isyided, and
finally the proposed NPSO algorithm is discussed.

3.1. PSO algorithm

The proposal of PSO algorithm was put forward byesa scientists who developed computational sitraria of
the movement of organisms such as flocks of bimi$ schools of fish. Such simulations were heavégdud on
manipulating the distances between individuals, tee synchrony of the behavior of the swarm vegssas an effort to
keep an optimal distance between them.

In theory, at least, individuals of a swarm maydférirom the prior discoveries and experiencealbthe members
of a swarm when foraging (Kennedy and Eberhart5)19bhe fundamental point of developing PSO is pdilyesis in
which the exchange of information among creatufébesame species offers some sort of evolutioadwantage.

Similarly to other population-based algorithms, P&%ploits a population of search points to probe $learch
space. Each individual in particle swarm, refetieeds a ‘particle’, represents a potential soluti®ach particle utilizes
two important kinds of information in decision pess. The first one is their own experience; thatisy have tried the
choices and know which state has been better sarfdrthey know how good it was. The second o¢hier particle’s
experiences; that is, they have knowledge of hanother agents around them have performed.

Each particle in PSO keeps track of its coordinateéke problem space, which are associated wéltb#st solution
(fitness) it has achieved so far. This value isechbbest(personalbes). Another “best” value that is tracked by the
global version of the particle swarm optimizerhie bverall best value and its location obtainethsdy any particle in
the population. This location is callgtdest(global bes).

Each particle moves its position in search domaith @pdates its velocity according to its own flyiegperience
and neighbor’s flying experience towardptsestandgbestlocations (global version of PSO). Acceleratismeighted
by random terms, with separate random numbers bgpingrated for acceleration towgrdestand gbestlocations,
respectively.

The procedure for implementing the global versibR80 is given by the following steps (Coelho, 2009
Step 1: Initialization of swarm positions and velocitidsitialize a population (array) of particles withtndom positions

and velocities in tha dimensional problem space using uniform probabdistribution function.

Step 2: Evaluation of particle’s fitnes€valuate each particle’s fitness value.

Step 3: Comparison to pbest (personal besfompare each particle’s fithess with the particfgest If the current
value is better thapbest then set the@bestvalue equal to the current value and pixestlocation equal to the
current location im-dimensional space.

Step 4: Comparison to gbest (global besGompare the fithess with the population’s ovemakvious best. If the
current value is better thabest then resegbestto the current particle’s array index and value.
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Step 5: Updating of each particle’s velocity and positioBhange the velocityy, and position of the particle,
according to equations (8) and (9):

W(t+1) =wiv (t)+ g ludip(t) =% O]+ o LU py(t) ~ (0] ©)

X (t+1) =x (1) + Aty (t+1) 9)

wherew is the inertia weighti=1,2,... N indicates the number of particles of populatioma(isn);t=1,2,.. ., indicates

the iterations;v :[\/,1,\/,2,...,\/,n]T stands for the velocity of theth particle % :[>q1,>qz,...,>qn]T stands for the position

of thei-th particle of population, andy =[nl,nz,...gn]T represents the best previous position of itile particle.

Positive constants, andc, are the cognitive and social components, respegtiwhich are the acceleration constants
responsible for varying the particle velocity todspbestandgbest respectively. Indexy represents the index of the
best particle among all the particles in the swaviariablesud andUd are two random functions in the range [0,1].
Equation (9) represents the position update, agogtad its previous position and its velocity, culesingAt =1.

Step 6: Repeating the evolutionary cyciReturn toStep 2 until a stop criterion is met, usually a suffidigngood
fitness or a maximum number of iterations (geners).

3.2. Proposed NPSO algorithm

Cultural algorithms are evolutionary techniqueseidlasn some theories proposed in sociology and eotbgy to
model cultural evolution, which extract informatifnom the domain of the problem during the evolaéiny process
itself. In this context, a cultural algorithm carcorporate domain knowledge obtained during théuthemary process
to render the search process more efficient. Tipicgtion of cultural algorithms in PSO is an afigtive strategy to
improve the convergence performance and local eg&eynolds, 1994).

Cultural algorithms consist of three componentsstFthere is a population component (or populaspace) that
contains the population to be evolved and the m@shes for its evaluation, reproduction and modiima Second,
there is a belief space that represents the bashidis been acquired by the population during rithlpm-solving
process. In this work, the proposed NPSO approaghays a belief space with a normative knowledge ce.

The normative knowledge contains the intervalsdfeeision variables (individuals) where good solithave been
found, in order to move new solutions towards thogervals. Thel; and u; are the lower and upper bounds,
respectively, for tha-th decision variable, ant; and U; are the values of the fitness function. More dsté#il
implementation of NPSO are presented in CoelhoAdatio (2008).

In this work, the modification of equation (8) (stical PSO) proceeds as follows in the pseudo c6d¢PSO,
wherej=1,...n are decision variables of each dimension:

% Flag: boolean variable (0-false; 1-true)

Flag = 0;
If xij(t)< I then
Vi (t+D) =wivi(t) + g fudi[p () =% ()] + 2 [UdI[ pg (1) =% ()]
Flag = 1;
End if

If Xij(t)> uijthen

Vi (t+D) =wivi (t) - ¢ lud[p (t) =% ()] - Ud [ pg (t) =% (1)]
Flag = 1;
End if

4. SSIMULATION RESULTS

In this section, we illustrate the synchronizatil® controller design for the above two systemgiby equations
(5) and (6) with different initial value condition§he parameterd= 3.6,£ = 1,m = 10 and initial conditiong; = 0.2
andy, = -0.2 { = m,-m + 1,...,0) are used in this example. We solveadbigmization problem wittN = 190,k = 80,
T=1s, and = 0.05.

In this section, to verify and demonstrate theaiteness of the proposed method, we discuss tinglation results
of synchronization between the master and slavesstar the classical PSO and the NPSO approaches.
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Each optimization method was implemented in Ma{stathWorks). All the programs were run on a 3.2 GHz
Pentium IV processor with 2 GB of random access argnin each case study, 50 independent runs weiee rfor
each of the optimization methods involving 50 diiet initial trial solutions for each optimizationethod. In this
paper, the PSO approaches are adopted using 2080€uaction evaluations in each run. The lower apder bounds
of the search space used in optimization methods g, K, Ky) O [0,3].

In this case study, the population size was 20ighest number maximum of generations (stoppingedon) was
100,c; = ¢, = 2.05, andv is a linearly decreasing function during the etiohary cycle of 0.9 to 0.4 in PSO and NPSO
approaches.

Optimization results of PSO and NPSO approache®Id controller tuning for chaotic synchronizationea
presented in Table 1. It can be seen from Tabkatl with the same preset maximum number of gememtiNPSO
obtained better mean and minimutnvalues than classical PSO. Furthermore, the cgewee curve presented in
Figure 1 showed that the NPSO approach presengter feonvergence that the PSO in minimizatiorFoffable 2
presents the best results of the PID controllenggabtained using PSO and NPSO in tested examiglere2 shows
the state responses of the master and slave systngsthe resulting PID controller gains obtaibydNPSO.

Table 1. Convergence results for synchronizatisk td chaotic system in 50 runs.

Optimization Method Minimunt MeanF MaximumF Standard Deviation d¥
PSO 2.3693 2.5255 2.7379 0.1411
NPSO 2.3143 2.3143 2.3144 1.073410°
9
PSO
————— NPSO| -

generations

Figure 1. Convergence (mean of besbf PSO and NPSO in 50 runs.

Table 2. Best results of PID controller gains asdigrmance data using optimization method in 5Grun

Parameter PSO NPSO
Ko 0.6079 0.6211
K; 0.1095 0.1234
Ky 0.3073 0.3238

Mean of error signal 0.0106 0.0095
Variance of control signal 4.093310* | 4.618610"
F 2.3693 2.3143




Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil

0.05

state response

-0.05H

control signal, u

0.1+

I I I I I I I I I 20.15 L L I I I I I I I
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200

0.4

error signal, e

-0.05 I I I I I I I I I
0 20 40 60 80 100 120 140 160 180 200
k

Figure 2. Best result using NPSO.

5. CONCLUSION

In recent years the investigation of chaos syndhation has attracted much attention in the lighpotential
applications in engineering field.

The contribution of this paper is to investigate #ynchronization of two identical discrete chasiistems subject
to different initial conditions by designing a Pontroller based on PSO and NPSO approaches. Bpeged control
scheme is easily implemented. A numerical exampkeleen presented to verify the validity of theal@wyed control
scheme. The results have shown that the proposeobtier is successful when applied to chaotic syanization.

As an extension of this paper, we may also incajgothe dynamic parameters updating techniqueghetdPSO
method to make it more promising in application®td tuning in multivariable systems.
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