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Abstract. This works shows how some technicalities in the design dfitheser can affect the turbulent boundary layer
detachment. The behavior of a turbulent flow of air, insideva timensional asymmetric straight-walled diffuser, with
an divergence angle @97 degrees, is numerically simulated considering some aspéd¢he solid boundary geometry.
The velocity profiles and the recirculation regions are camepl with the experimental data. The research algorithnduse
to simulate the turbulent flow applies a consolidate Reysaleraging process for the turbulent variables and uses the
classicalkx —e model. The turbulentinner layer is modeled by four distimtbcity laws of the wall. Spacial discretization

is done by a finite element method and temporal discretizagianplemented using a semi-implicit sequential scheme of
finite differences. The pressure-velocity coupling is mically solved by a variation of Uzawa'’s algorithm. To filtdre
numerical noises, originated by the symmetric treatmerggio the convective fluxes, it is adopted a balance diseipat
method. The remaining non-linearities, due to laws of thdé @xplicit calculation, are treated by a minimal residual
method.
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1. INTRODUCTION

In the last three decades great amount of research has beenrdthe numerical simulation of turbulent flows,
with emphasis on turbulent flows of industrial and environtakinterest. In this work we bring into prominence the
detachment of turbulent boundary layer, induced by smodteige pressure gradients, like happens inside a straight-
walled diffuser with a divergence angle@f7 degrees. The diffusers are a geometry of particular intelesto its great
importance in the behavior of a wide diversity of machines.

To avoid the boundary layer detachment in a diffuser is d tétsk to assure it's main purpose: to convert as large
a fraction as possible of the dynamic pressure into sta#sgure. The straight way to prevent the boundary layer de-
tachment is to design a diffuser with a small divergenceeabgt, in order to achieve a high static pressure, the size of
the diffuser axial length would be necessarily large, wh&h handicap. However, numerical results presented in this
work, strongly suggest that constructive details, in thetiand outlet of the diffuser, are capable of increasingllgche
turbulent intensity and may act decreasing or, at leasvgnténg the boundary layer detachment inside the diffuder.
experimental results confirm what is observed in the nuraksimulation, this feature of turbulent flows in plane déféus
could be studied in a broader way, with the goal of normadjziary cheap and simple constructive procedures, capable
to difficult or, at a limitrophe circumstance, to avoid theubdary layer detachment inside diffusers.

The constructive detail mentioned is the curvature in thet iand on the outlet of the diffuser, as detailed by Buice
and Eaton (1995). This work observed numerically that whertriansition between the entering channel and the diffuser
is conducted by a smooth curvature, the boundary layer kietewt is increased for small divergence angles. When the
transition is done directly, without considering a smoatinvature, the boundary layer detachment is decreased. The
reasons for this behavior will be discussed still.

This work does a numerical analysis about the influence ofjfenetry details in the dynamic field of a turbulent
flow of air, inside an asymmetric straight-walled diffusettwan divergence angle 6f97 degrees. The numerical results
of this work are confronted with the experimental data ai#diby Buice and Eaton (1995).

The solver used, named Turbo2D, is a research Fortran ncatheode, that has been continuously developed by
members of the Group of Complex Fluid Dynamics - Vortex, effhechanical Engineering Department of the University
of Brasilia, in the last twenty years. This solver is basedhmadoption of the finite elements technique, under the
formulation of weighted residuals proposed by Galerkirggihg in the spatial discretization of the calculation Gidm
the triangular elements of the type P1 and P1-isoP2, as peddny Brison, Buffat, Jeandel and Serres (1985). In the P1
mesh only the pressure field is calculated while all the otheables are calculated in the P1-isoP2 mesh.

Considering the uncertainties normally existing aboutittitgal conditions of the flow to be simulated, it is adopted
the temporal integration of the governing equations systienthe temporal integration process, at the beginning ef th
flow, the initial state corresponds to an arbitrary value lbflapendent variables and the final state is attained when
are concluded the temporal variations of the velocity, ues, density and other turbulent variables. The temporal
discretization of the of the governing equations systenplémented by the algorithm of Brun (1988), uses sequential
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semi-implicit finite differences, with truncation error ofder0(At) and allows a linear handling of the equation system,
at each time step.

The resolution of the coupled equations of continuity andmantum is done by a variant of Uzawa’s algorithm
proposed by Buffat (1981). The statistical formulatiorspensible for the obtaining of the system of average equstio
is done with the simultaneous usage of the Reynolds (183bawre (1965) decomposition. The Reynolds stress tensor
is calculated by the: — ¢ model, proposed by Jones and Launder (1972) with the moiilifitsintroduced by Launder
and Spalding (1974).

In the program Turbo2D, the boundary conditions of velocén be calculated by four velocity laws of the wall. The
velocity laws of the wall used in this work are: the classicglarithm law, and the laws of Mellor (1966), Nakayama
and Koyama (1984), and Cruz and Silva Freire (1998). The migalénstability resultant of the explicit calculation of
the boundary conditions of velocity, through the evolutimporal process, is controlled by the algorithm proposed b
Fontoura Rodrigues (1990). The numerical oscillationsiged! by the Galerkin formulation, resulting of the centered
discretization applied to a parabolic phenomenon, thdatésniodeled flow, are cushioned by the technique of balanced
dissipation, proposed by Huges and Brooks (1979) and Kilhkazawa and Zienkiewicz (1976) with the numerical
algorithm proposed by Brun (1988).

In order to quantify the wideness of range and the consistefithe numerical modeling done by the solver Turbo2D,
the results obtained numerically are compared to the exgerial data of Buice and Eaton (1995).

2. Governing equations

The turbulent one phase flow analyzed in the present workielgeneous, at low Mach number, and the gravitational
force is small compared to advective effects. Considetiegtocedures shown by Soares and Fontoura Rodrigues (2004)
with pertinent adaptations for isothermal flows, the covastion equations of mass and momentum, which des-cribe the
phenomena, are respectively represented, in Einsteitégion, by the dimensionless relations:
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wherep is the fluid density, t represents time, a cartesian coordinate; is the:*" velocity component, p is the thermo-
dynamic pressure anfle is the Reynolds number.

2.1 The turbulence model

The adopted methodology is a transformation of the systeimstdintaneous dimensionless governing equations into
a system of mean equations, obtained using a statistieahiet, resultant from the Reynolds averaging.

The closure of the mean equations is based on Boussinegy3)(hypothesis of eddy viscosity. For the velocity
fluctuation correlation tensor, the Reynolds Stress Tetekes the form:

U, ’U,j = §I€5ij — UVt (axj + awz) ’ (3)

wherev, is the eddy viscositys is the turbulent kinetic energy;; is the delta of Kronecker operator and the over-bars
indicate averaged variables. The form adopted in this woekpress the eddy viscosity, as a function of the turbulent
kinetic energy and its dissipation rate, is using the Prandtl - Kolmogorov relation:
K2 1
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whereC,, is a constant of value 0.09. With the adoption of relation {d¢ x — ¢ turbulence model relation imposes the
necessity of two supplementary transport equations toytsies of mean equations, destined to evaluation of vagable
x ande. Once defined the closure of the mean equations system, rinetidh proposed by Brun (1988) produces the
following system of equations:
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and the constants of the model are given:
C,=009,Cq =144, Cery =192, 0, =1, 0. =1.3. (11)
2.2 NEAR WALL TREATMENT

The k — ¢ turbulence model is incapable of properly representingahenar sub-layer and the transition regions of
the turbulent boundary layer. To solve this inconvenietioe solution adopted in this work are the laws of the wall for
velocity employment, capable of properly representindline in the inner region of the turbulent boundary layer.

There are four velocity laws of the wall implemented on Tu2Bb The laws used in this simulation are shown bellow,
except for the classical log law, that further explanatiaressunnecessary.

2.2.1 Velocity law of the wall of Mellor (1966)

Deduced from the mean equation of Prandtl for the turbulenhbary layer, considering the pressure gradient term
for integration, this wall function is a primary approachflmws that suffer influence of adverse pressure gradiends. It
equations are, respectively, for the laminar and turbulegibn
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where the asterisk upper-index indicates dimensionleastgies of velocityu*, pressure gradiept: and distance to the
wall y*, as functions of scaling parameters to the near wall redfois, the Von Karman constant, argg- is Mellor’s
integration constant, function of the near-wall dimen&es pressure gradient, determined in his work of 1966.
The intersection of both regions is considered to be the s@srbe log law expressions, wiff = 11,64. The
relations between the dimensionless near wall propentiéslze friction velocityu  are:
* yuyr * ax * 1 8]5 v

Y= — , u = — and p =—5.73 - (14)
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The friction velocity is calculated by the relation:
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In equation (13) the terrg),- is a value obtained from the integration process proposédeilpr (1966) and is a func-
tion of the dimensionless pressure gradient. Its valueslaigned through interpolation of those obtained expemiailéy
by Mellor, shown in Tab. 1.

Table 1. Mellor’s integration constant (1966)

p* | —0.01 | 0.00 | 0.02 | 0.05 | 0.10 | 0.20 | 0.25 | 0.33 | 0.50 | 1.00 | 2.00 | 10.00
& | 492 | 490 | 494 | 5.06 | 5.26 | 5.63 | 5.78 | 6.03 | 6.44 | 7.34 | 8.49 | 12.13
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2.2.2 Velocity law of the wall of Nakayama and Koyama (1984)

In their work, Nakayama and Koyama (1984) proposed a dévivaf the mean turbulent kinetic energy equation, that
resulted in an expression to evaluate the velocity nead bolindaries. Using experimental results and those olathiyne
Strattford (1959), the derived equation is

1 to+1t—1
* = 3(t—tg) +1 — |, 16
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with
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whereK* is the expression for the Von Karman constant modified by thegnce of adverse pressure gradieritss a
dimensionless shear stre6s= 5.445 is the log-law constant andg; , andt,, a value of t at positiop*,, are parameters
of the function.

2.2.3 Velocity law of the wall of Cruz and Silva Freire (1998)

Analyzing the asymptotic behavior of the boundary layer flowler adverse pressure gradients, Cruz and Silva Freire
(1998) derived an expression for the velocity. The solutibthe asymptotic approach is

2
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where the sub-indey indicates the properties at the wall, K is the Von Karman tamtsL. is a length scale parameter
anduy is the friction velocity.

The proposed equation for the velocity, equation (18), Haehavior similar to the log law far from the separation and
retachment points, but close to the separation point, dgaly tends to Stratford’s equation (1959).

3. NUMERICAL METHODOLOGY

The numerical solution of a turbulent wall flow, with the heiBeynolds: — ¢ turbulence model used in this work,
has as main difficulties the coupling between all equatitmsnon-linear behavior resulting of the simultaneousoacti
of advective and eddy viscosity terms; the explicit caltalss of boundary conditions in the solid boundary and the
methodology of use the continuity equation as a manner kalia coupled fields of velocity and pressure.

The solution proposed in the present work suggests a temngiscaetization of the system of governing equations
with a sequential semi-implicit finite difference algorithproposed by Brun (1988) and a spatial discretization using
finite elements of the type P1-isoP2. The temporal and dpisieretization implemented in Turbo 2D is presented in
Fontoura Rodrigues (1990).

3.1 Numerical solver algorithm

The system of governing equations is spatially discretirmadg a first order approximation to the temporal derivative
obtained with a sequential semi-implicit finite differenaigorithm, with first order truncating error, which allows a
complete linearization of all equations at each time stefpe dlgorithm proposed by Brun (1988) starts the calculation
with a known field at an instamtAt, calculating the momentum, the pressure, the temperdhgregensity, the turbulence
kinetic energy and its dissipation rate at an instant- 1)At¢, wheren is a integer number andl¢ is a time interval, by
means of a sequence of calculations divided in three stages.

On the first stage, the boundary conditions at an ingtant 1) At for the velocity field are obtained from a chosen
law of the wall, using values from instantA¢. On the second stage, the fields of momentum and pressureleutated
at instant(n + 1)At, using a variation of Uzawa’s minimum residuals algorithrogosed by Buffat (1981), with the
coupled system of equations:
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On the third and last stage, all other variables are solvetstnt(n + 1)At:
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with the production ternil and the modified pressupg given by:
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At last, the turbulent Reynolds number is updated with theest values:

1 (Kn-ﬁ—l)Q
Rept! = Cu gntl 7 (25)

and then return to the first step, until the required preni@aeached.

As the boundary conditions are calculated explicitly, lolase values of the instanmtAt to determine the conditions
for the instant(n + 1)At¢, a numerical instability inevitably appears. To eliminties characteristic of the use of laws
of the wall, in applications where temporal variations avasidered, the minimization residuals technique propbsed
Fontoura Rodrigues (1990), that adopts an iterative caticul sequence based on the minimization of the resultiray er
on the evaluation of the friction velocity, defined for a deimed iterationi at an instanfn + 1)At, as:

(ERROR)}* = || (u3)" = (u3)/™|| (26)

where the double bars indicate the absolute values of thengethe value O(U?p)* is obtained with the laws of the wall

relation, with values of iterationat instant(n + 1) At, and the value o¢u§)?+1 is obtained with a numerical relation of
recurrence, from the error minimization algorithm.

4., RESULTS

The calculation domain consists in an asymmetric planeskif with an opening angle 6f97°. In the inlet experi-
mental profiles of velocity, turbulent kinetic energy ansl riate of dissipation are imposed. In the walls the boundary
velocity condition is calculated with the employment of kaf the wall. In this work it was setted a non dimensional
distance from the wall of;}, ... = 2.0 for all the laws of the wall tested, this value was calibratgdrial and error based

on the numerical estability, wich is the usual procedurelieruse of these laws of the wall. In the outlet is imposed a
null pressure condition. Figure 1 shows the calculation @orwith the boundary conditions employed in this test case.

n X < C

j 3 Calculation domain P-0

Figure 1. Calculation domain and boundary conditions- Baind Eaton (1995) test case
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The meshes used to execute the simulations are shown in.Fig. 2
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Figure 2. P1 mesh (a) and P1-isoP2 mesh (b) - Buice and Ea885)1est case

It is possible to notice a higher refinement level in the nealf megions. Figure 2 b indicates that the P1-isoP2 mesh
contains 27,104 elements. This is a considerable fine meghifokind of phenomenon. Figure 3 shows the difference
in the inlet detail considered in this work. This means theth& simulations were executed considering a sharp and a
smooth transition in the inlet and in the outlet of the diffus
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X/h
Figure 3. Sharp transition (a) and smooth transition (b)ieBand Eaton (1995) test case

The velocity profiles obtained numerically with the use of tbur laws of the wall considered were taken in eight
points, illustrated in Fig. 4.
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Figure 4. Points where the profiles were taken - Buice andrEdt®95) test case

Figure 5 shows the profiles taken in points A,B,C and D.
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Figure 5. Velocity profiles in points A (a), B (b) C (c) and D (Buice and Eaton (1995) test case

It is possible to observe that the classic log law of the weglroduces better the dynamic behavior of the flow before
de detachment point, in profiles A and B. Point C represestdéitachment point. From this point until the end of the test
section, the three laws of the wall that consider the exgstiressure gradient action are those that better reproduees
flow behavior, with little difference between then. Figuril@strates the velocity profiles taken from point E to pdiht
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It is importante to notice that at the last measurement@ectiie numerical profiles obtained with the use of the laws of
the wall of Mellor (1966), Nakayama and Koyama (1984) andzG@r&ilva Freire (1998) generates a very good agreement
between numerical and experimental results.
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Figure 6. Velocity profiles in points E (a), F (b) G (c) and H {dBuice and Eaton (1995) test case

It is interesting to notice that in this case the log law is caypable to predict the boundary layer detachment. This
behavior is different from the one observed in geometriesrehthe detachment is induced by a sudden change in the
geometry, such as in a channel with square ribs simulateddoyijé and Fontoura Rodrigues (2007), or in the backward
facing step flow, as showed by Gontijo and Fontoura Rodri¢2@38).

The consideration or not, of the geometrical detail in thetiand in the outlet of the diffuser, is not capable to praduc
a great change in the velocity profiles, but they influenceaipect of the recirculation region. Figure 7 shows how the
geometry influences the aspect of the recirculation regioenthe flow field is calculated using the Mellor (1966) law of
the wall. This confrontation is done for the law of the wallkidlyama and Nakayama (1984), Fig. 8, and for the law of
the wall of Cruz and Silva Freire (1998), Fig. 9.
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0 10 X 30
Figure 7. Smooth transition (a) and sudden change (b) - MEglRG66) law - Buice and Eaton (1995) test case

0 10 X 20 30

Figure 8. Smooth transition (a) and sudden change (b) - Kayamd Nakayama (1984) law - Buice and Eaton (1995) test
case

0 10 X 20 30

Figure 9. Smooth transition (a) and sudden change (b) - GrdAdva Freire (1998) law - Buice and Eaton (1995) test
case
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The behavior obtained with all laws of the wall is consistertis means that, for this divergence angle, the sudden
change in the geometry acts like a micro vortex generatatjtfects energy in the turbulent boundary layer and cssate
localized smaller recirculation region. This result isimgsting because it shows a simple manner to minimize thstewa
of energy spent in the recirculation region, just by not éd&isng a smooth transition in the inlet and in the outletiaf t
diffuser. Of course this behavior is justified by the smaléoing angle. If large opening angles were considered, the
sharp transition in the inlet and in the outlet would inceetiee size of the recirculation region.

5. CONCLUSIONS

This work does an analysis based on the use of laws of the ajadllide to consider the existing pressure gradients in
the internal region of the turbulent boundary layer and dvehtwo interesting facts. The first of them is that the ctassi
log law used in most of the commercial packages that employ$igh Reynolds — ¢ model is uncapable to predict
the boundary layer detachment when it is caused by a smouwérseipressure gradient imposed by the geometry. On the
other hand, the laws of Mellor (1966), Koyama and Nakaym&4}@and of Cruz and Silva Freire (1998), that consider the
influence of pressure gradients in the near wall region wapalsle to produce a behavior very closed to the experimental
measurements of Buice and Eaton (1995).

The numerical simulation of the asymmetric straight-wdtiéfuser, with an divergence angle @979, discloses that
the non consideration of a smooth transition, in the inletiarthe outlet of the diffuser, is capable to induce the gatien
of localized micro vortex that injects energy in the turlmilboundary layer, minimizing the size of the recirculation
region, in a behavior similar to the addition of a roughnedtl.wa
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