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Abstract. In this paper, the Askey-Wiener scheme and the Galerkin method are used to obtain approximate solutions to 
stochastic diffusion problems. The uncertainty in diffusion coefficient is represented as a parameterized stochastic 
process. The space of approximate solutions is built using results of density between spaces of continuous functions 
and Sobolev spaces. The random behavior of the problems response is modeled using the Askey-Wiener scheme. From 
the approximate solution, first and second order moments are obtained and compared with corresponding estimates 
obtained via Monte Carlo simulation. Results show very fast convergence to the exact solution, at excellent accuracies. 
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1.  INTRODUCTION 
 

Analysis and modeling of the thermal behavior of mechanical systems is a very important problem in engineering. 
The use of simulation to forecast the structural and thermal behavior of a system is essential if optimal performance is 
to be achieved. Numerical solutions to heat transfer problems have become increasingly common in the last decades, as 
result of new theoretical developments and ever-greater availability of computational power. Such advances stimulate 
scientists and engineers to look for more powerful and accurate methods to solve increasingly complex problems. 
Developments in constitutive models and improvements in consistency and robustness of mathematical models, 
however, are not sufficient to preview system behavior in the presence of uncertainties. Deterministic formulations will 
always be limited, because parameter and system uncertainties are grossly neglected. On the other hand, probabilistic 
modeling in continuum mechanics problems has increased in recent years. 

The application of the Galerkin method to stochastic systems was first described by Spanos and Ghanem (1989). 
Heat transfer with uncertainties in the material properties has been studied extensively in recent years. Examples 
include the studies by Hien and Kleiber (1997), who investigated transient heat transfer using the perturbation 
technique; Kaminski and Hien (1999), who applied the perturbation method to study transient heat conduction in 
composite materials; Xiu and Karniadakis (2003), who used the Galerkin method to study transient heat conduction, 
and Emery (2004), who solved the transient heat conduction problems using a number of different methods. Jardak et 
al. (2002) used chaos polynomials to obtain approximate, numerical solutions for the advection problem, in stationary 
regime, with a stochastic transport velocity. Xiu and Shen (2007) obtained numerical solutions for the Helmholtz 
equation, modeling propagation of acoustic waves in a random surface. Jin and Zou (2008) studied an inverse heat 
conduction problem, in the stationary regime and with a Robin-type boundary condition. It is significant to note that 
none of the cited references presented any results about the existence and uniqueness of the solutions to the Helmholtz 
equation, in the case of uncertain parameters. 

In this paper, numerical solutions are constructed, via Galerkin method, for stationary stochastic diffusion problems, 
subject to Neumann boundary conditions. Uncertainty in the diffusion coefficient is modeled via parameterized 
stochastic processes. The approximate solution space is constructed by tensor product between Sobolev spaces and a 
probability measure space. Generalized chaos polynomials, generated via the Askey-Wiener scheme (Xiu and 
Karniadakis, 2003), are used to represent the solution (random response). The developed methodology is evaluated by 
comparing first and second moments, derived from the Galerkin solution, with the same moments obtained via Monte 
Carlo simulation. 
 
2.  THE STOCHASTIC DIFFUSION PROBLEM 
 

The steady-state stochastic diffusion equation is given by  
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where u  is the response, κ  is the thermal conductivity coefficient, q is the source term, 2D ⊂ \  is a bounded and 
closed domain with regular boundary Γ , h  is a function defined in the boundary, ω is an element of the sample 
domain Ω . Equation (1) is the strong form of the stochastic diffusion problem. In order to ensure existence and 
uniqueness of the strong solution, the following hypotheses are necessary: 
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Hypothesis H1 ensures coercivity and continuity of the bi-linear form associated to the heat conduction problem. 
Hypothesis H2 ensures limitation of the source terms in D . Hypothesis H1, H2 and H3 are necessary to ensure 
existence and uniqueness of the solution to the stochastic diffusion problem. 
 
3.  MODELLING OF THE UNCERTAINTY 
 

Explicit mathematical modeling of the uncertainty is necessary in order to obtain numerical solutions to stochastic 
problems. Uncertainty models must be compatible with hypothesis H1 presented in Eq. (2). In this paper, the 
uncertainty in conductivity coefficient is represented as a parameterized stochastic process (Grigoriu, 1995), 

: Dτ ×Ω→\ , defined in probability space ( ), , PΩ F , and having the following form: 
 

 ( ) ( ) ( ) ( ) ( )
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where τ  is the property to be modeled and ( ){ } 1

N
i i=
ξ ω  is a vector of random variables, uniformly distributed in { }1 1,− , 

such that:  
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In eq. (4),  ⋅≺ ;  is the mathematical expectation operator. Hence, the mean value of τ  is: ( ) ( ), ττ ⋅ =µ≺ ;x x and the 

variance of τ  is ( ) ( ) ( )2 2, τ ττ ⋅ −µ =σ  ≺ ;x x x .  
 
3.1 The Askey-Wiener scheme 
 

The Askey-Wiener scheme is a generalization of chaos polynomials, also known as Wiener-chaos. Chaos 
polynomials were proposed by Wiener (1938) to study statistical mechanics of gases. Xiu and Karniadakis (2003) have 
shown the close relationship between results presented by Wiener (1938) and Askey and Wilson (1985) for the 
representation of stochastic processes by orthogonal polynomials. Xiu and Karniadakis (2003) extended the studies of 
Spanos and Ghanem (1989) and Ogura (1972) for polynomials belonging to the Askey-Wiener scheme. 

The Cameron-Martin theorem (1947) shows that Askey-Wiener polynomials form a base for a dense subspace of 
second order random variables ( )2 , ,L PΩ F . As shown by Jason (1997), an element ( )2 , ,f L P∈ Ω F  can be 
represented as 
 

( ) ( )f cα α
α∈ℑ

ω ψ ω=∑ ,              (5) 

 

where { }α α∈ℑ
ψ  is a sequence of polynomials, such that { }
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( )1 1, , ,...Ncα ∈ ∀α = α α ∈ ℑ\  with iα ∈ ` . 
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The tensor product between polynomials iψ  and jψ  in ( )2 , ,L PΩ F  is defined as, 
 

( ) ( ) ( ) ( )( ) ( )2 , ,
N
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Ω
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\
F

ξ ,           (7) 

 
where dP  is a probability measure. These polynomials form a complete ortho-normal system with respect to the 
probability measure, with the following properties: 
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1 i j ijL P
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Ω
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           (8) 

 
It is important to observe that in Eq. (8) the polynomials are orthogonal with respect to the probability measure dP.  

The Askey-Wiener scheme represents a family of sub-spaces generated by orthogonal polynomials obtained from 
ordinary differential equations (Xiu and Karniadakis, 2003). Among them, the Hermite, Laguerre, Jacobi and Legendre 
polynomials can be cited. The families generated by these polynomials form a complete system in 2L . The 
orthogonality between the polynomials is defined with respect to a weight function, which is identical to the probability 
density function of a certain random variable. 
 
4.  NOTATION AND SPACE OF FUNCTIONS 
 

In this section, some definitions and notations that will be used along the study are presented. The principle of 
causality says that, for problems with uncertainty in the source term or in system parameters, system response will 
necessarily show stochastic behavior. For these problems, the solution space should contain functions to represent this 
random behavior. In this study, the solution space is constructed via tensor product between Sobolev and probability 
spaces. This originates the so-called Stochastic Sobolev Spaces. 
 
4.1 Stochastic Sobolev Spaces 
 

The association between the theories of probability, product tensor and Sobolev spaces originate the Stochastic 
Sobolev Spaces. The convergence of numerical solutions obtained in these spaces, to the theoretical solution, is based 
on the isomorphism between stochastic Sobolev spaces and Sobolev spaces defined in more complex measure spaces 
(Babuška et al., 2005 and Frauenfelder et al., 2005). The theoretical solution to the stochastic diffusion problem is 
defined in ( )( )12 , ;V L , P H D= Ω F , with, 
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Noticing that ( )( ) ( ) ( )1 12 2, ; ,L , P H D L , P H DΩ Ω ⊗�F F , one obtains ( ) ( )12 , ,V L P H DΩ ⊗� F . It is also 
necessary to redefine the differential operator for the space obtained via tensorial product. The operator 

( ) ( )2 2: , ,V L P L Dω∇ → Ω ⊗F , (Matthies and Keese, 2005), acts over an element u V∈  the following way, 
 

( )( ) ( ): .u v x wω∇ ∇ ω .           (10) 

 
For u,v V∈ , the following internal product is defined, 
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this internal product induces the V-norm ( )1

2

V Vu u ,u= . 
The abstract variational problem, or weak form associated to Eq. (1), is defined as follows, 
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where a :V V× →\  is a bi-linear form, given by, 
 

( ) ( )( ) ( ),
D

a u,v . u v d dP
Ω

ω ω= κ ∇ ⋅∇ ω ω∫ ∫ x x ,         (13) 

 
and ,⋅ ⋅  is a duality between V  and V ′ , defined as, 
 

( )( ) ( ) ( )( ) ( ), , ,
D
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Numerical solutions are obtained for the abstract variational problem defined in Eq. (12). 
 
5.   METHOD OF GALERKIN 
 

The Galerkin method is used in this paper to solve the stochastic diffusion problem defined in Eq. (1). It is proposed 
that approximate solutions for the stochastic response be obtained as 
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where iu , i∈ ∀ ∈\ `  are coefficients and i Vδ ∈ . Numerical solutions to the abstract variational problem defined in 
Eq. (12) will be obtained. Hence, it becomes necessary to define spaces less abstract than those defined earlier, but 
without compromising the existence and uniqueness of the solution. Consider two complete orthogonal systems 
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( ) ( ) ( ) ( )k lj
., ,φ⊗ ψ ω =φ ψ ωx x  with k,l ∈ ` .        (16) 

 
To simplify the notation, we will use ( )j j

δ = φ⊗ ψ . Since approximated numerical solutions are derived in this paper, 

the solution space has finite dimensions. This implies truncation of the complete orthogonal systems Φ  and Ψ . Hence 
one has { } 1

m
m i i
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Ψ ψ= , which results in nmMV Ψ=Φ ⊗ . With the above definitions and 

results, it is proposed that numerical solutions are obtained from truncation of the series expressed in Eq. (18) at the M-
th term 
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Replacing Eq. (17) in Eq. (12), one arrives at the approximated variational problem 
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Eq. (18) can be represented in vector form as, 
 

,=K U F              (19) 
 
with ( )M M∈ \K , ( )= dim m.nM =K . From Eqs. (13) and (16) the entries of matrix K are obtained as, 
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and the elements of vector F are given by, 
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6. STATISTICAL MOMENTS 
 

Numerical solutions to be obtained are defined in MV V⊂ . Interest lies in the statistical moments of the stochastic 
response. In this section, it is shown how the first and second order moments are evaluated from the numerical solution. 

The statistical moment of kth order of a random variable ( )u ,⋅x  is obtained, for a fixed point D∈x , by taking the 
kth power of the stochastic response process and integrating with respect to it’s probability measure, 
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The integration term ( )dP ⋅  is a probability measure defined as, 
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where :i iρ ξ →\  is the probability density function of random variable iξ . From the measure and integration theory, 
one knows that the probability measure defined in Eq. (23) is the product measure obtained from the product between 
probability measure spaces associated to the random variables ( ) ( ){ } 1

N

ii =
=ω ξ ωξ , with [ ]i ii ,a bξ :Ω→ . With the 

probability measure defined in Eq. (23) one has, 
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The integrals in Eq. (21) are called iterated integrals. The first order statistical moment, or expected value, of the 
stochastic displacement process evaluated at a point D∈x  is, 
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The second-order statistical moment (the variance) is, 
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In the numerical example to follow, the statistical moments defined in Eqs. (22 and 26) are evaluated and compared 

with the same moments obtained via Monte Carlo simulation, using ten thousand samples (NS = 10000). To evaluate the 
error of approximated solutions, the relative error functions in expected value and variance ( uµε  and hε , respectively), 
are defined as 
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where Muµ  and uµ are the expected value obtained via Galerkin and Monte Carlo solutions, respectively. The 

functions ( )2, : 0  xLh h , →
�

\  are defined from the covariance function, either based on the Galerkin (
MuCov ) or Monte 

Carlo ( uCov ) solutions, as follows, 
 

( ) ( ) ( ) ( ) ( ) { } { } ( ) ( )1 1 1 1 1 1 1 1    and     0 0
M x yu uh Cov x , y ,x, y h Cov x , y ,x, y , x , y ,x, y x y ,L ,L .x x ∀ ∈ × × ×= =

�
  (28) 

 
 

7.   NUMERICAL RESULTS 
 

In this section, numerical results to a stochastic diffusion problem are presented. The problem domain is defined as 
( ){ }2, 0 , 0x yD x y x L y L= ∈ < < < <\ , with 1mx yL L= = . The source term is constant and given by 
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with ( ){ }2

1 , , 0x yx y x L y LΓ = ∈ = ≤ ≤\ . The numerical solutions are obtained for 1=m , ( )= dim mm Φ , and for 

different dimensions of nΨ , { }5 15 35n , ,∈ . Results for the expected value and variance of the stochastic response, and 
the corresponding relative errors, are computed. Numerical results were obtained in a personal computer, running a 
MATLAB computational code. 

The diffusion coefficient is represented as a parameterized stochastic process, 
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where κµ  and κσ  are the expected value and standard deviation, respectively, and { } 4

1i i=
= ξξ  is a vector of 

independent uniform random variables, with properties given in Eq. (4). For the present example, 
( ) ( ), 2461 W K , ,x y x y Dκµ = ∀ ∈  and ( )1

10 .κ κ=σ µ . In the present paper, no investigation of convergence of the 
approximated solutions is presented. 
 

Figure 1 shows ten thousand samples ( )N 10000S = , obtained via Monte Carlo simulation, of the random response 

for this problem, evaluated at ( ) ( )2.
0 5, yLu x u x= . 

Figure 2a shows the mean of the random response in the problem domain. Figure 2b shows the “covariance” 
function ( )h x,y , evaluated for ( ) ( )22

1 1 5 5
yx .L.Lx ,y ,x,y , ,x,y= . 

Figure 3 shows the relative error functions, defined in Eq. (27), in terms of the order of approximate Galerkin 
solutions, for { }1, 2,3p ∈ . Figure 3a shows the error in the mean and figure 3b shows the error in function ( )h x,y , 

both evaluated from the temperature response ( ) ( )2.
0 5, yLu x u x= . It is noted that the error in expected value is very 

small, even for p = 1. The error in “variance” is significant for p = 1, but is largely reduced for p ≥ 2. It is also noted that 
the errors for p = 2 and p = 3 accumulate over each other.  

It is not shown in this paper, but the proposed solution of the diffusion problem via chaos polynomials can be used 
to estimate moments of any order of the response. The experience of the authors, however, tells that the approximations 
loose quality when the order of the approximated moment increases. This is observed in Fig. 3, were for approximated 
solutions of same order, the error was shown to be larger for the variance than for the expected value. 

 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: a) mean of the random response;  
b) covariance of random response evaluated at ( ) ( )22

1 1 5 5
yx .L.Lx ,y ,x,y , ,x,y= . 

Figure 3: Relative error in expected value (a) and in “variance” (b) of random response. 

Figure 1: Realizations of the response field.

( )0u x  
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8.   CONCLUSIONS 
 

In this paper, the Galerkin method was used to obtain approximate solutions to stochastic diffusion problems. The 
uncertainty in diffusion coefficient was represented as a parameterized stochastic process. The space of approximate 
solutions was constructed from the tensorial product between Sobolev spaces and Legendre polynomials, derived via 
Askey-Wiener scheme. The proposed solution scheme was applied to an example problem. Numerical solutions were 
obtained for increasing orders of chaos polynomials. From the approximate solutions, first and second order moments 
were computed and compared with corresponding estimates obtained via Monte Carlo simulation. Results show the 
good performance of chaos polynomials in estimating the first and second order moments of the response field. Results 
also show that the approximated solutions loose quality as the order of the computed moment increases. The Chaos-
Galerkin scheme developed herein is shown to be a theoretically sound and efficient method for the solution of 
stochastic problems in engineering 
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