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Abstract. The tuned vibration absorber (TVA) is a well-established vibration passive control device for achieving 

vibration reduction of a primary system subjected to external excitation. The TVA consists of a secondary oscillatory 

system that once attached to a primary system is capable of absorbing vibration energy from the primary system. This 

contribution deals with the nonlinear dynamics of an adaptive tuned vibration absorber (ATVA) with a shape memory 

alloy (SMA) element. Initially, a single-degree of freedom oscillator with an SMA element is analyzed showing the 

general characteristics of its dynamical response. Then, the analysis of an SMA-ATVA is carried out starting, first by 

considering small amplitude vibrations in such a way that the SMA element does not undergo a stress-induced phase 

transformation. Under this assumption, the SMA influence is only caused by stiffness changes corresponding to 

temperature-induced phase transformation. Afterwards, the influence of the hysteretic behavior due to stress-induced 

phase transformation is considered. A proper constitutive description is employed in order to capture general 

thermomechanical aspects of the SMAs. The hysteretic behavior introduces complex characteristics to the system 

dynamics but also changes the absorber response allowing vibration reduction in different frequency ranges. 

Numerical simulations establish comparisons of the SMA-ATVA results with those obtained from the classical TVA. 
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1. INTRODUCTION 

 

Vibration control is an essential task in engineering being related to different applications. The main goal is 

vibration reduction by employing either active or passive procedures. The tuned vibration absorber (TVA) is a well-

established vibration passive control device for achieving reduction in the vibration of a primary system subject to 

external excitation (Inman, 1989; Meirovitch, 1986). The TVA consists of a secondary oscillatory system that once 

attached to the primary system is capable of absorbing vibration energy from the primary system. By tuning the natural 

frequency of the TVA to a chosen excitation frequency, one produces an attenuation of the primary system vibration 

amplitude for this specific forcing frequency. An alternative for systems where the forcing frequency varies or has a 

kind of uncertainty is the conception of an adaptive tuned vibration absorber (ATVA). This device is an adaptive–

passive vibration control similar to a TVA but with adaptive elements that can be used to change the tuned condition 

(Ibrahim, 2008; Brennan, 2006). 

The remarkable properties of shape memory alloys (SMAs) are attracting technological interest in several science 

and engineering fields and numerous applications have been developed exploiting singular characteristics of these 

alloys (Lagoudas, 2008; Paiva & Savi, 2006; Machado & Savi, 2003). In terms of applied dynamics, SMAs are being 

used in order to explore adaptive dissipation associated with hysteresis loop and the mechanical property changes due to 

phase transformation (Savi et al., 2008; van Humbeeck, 2003). Moreover, the dynamical response of systems with SMA 

actuators presents a unique dynamical behavior due to their intrinsic nonlinear characteristic, presenting periodic, quasi-

periodic and chaotic responses (Savi & Pacheco, 2002; Machado et al., 2003, 2008; Bernardini & Rega, 2005; Savi et 

al., 2008). Recently, SMA constraints have been used for vibration reduction since it is expected that the high 

dissipation capacity of SMA changes the system response producing less complex behaviors (Sitnikova et al., 2008a,b; 

Santos & Savi, 2007). 

In this regard, SMAs have been used in a number of approaches to passive structural vibration control (Machado et 

al., 2009; Lagoudas et al., 2004; Salichs et al., 2001; Saadat et al., 2002). SMA characteristics motivate the concept of 

an adaptive tuned vibration absorber (ATVA) that is able to change its stiffness depending on the SMA element’s 

temperature (Elahinia et al., 2005). This property allows one to attenuate primary system vibration amplitudes not only 

for one specific forcing frequency, as occurs with the TVA, but for a range of frequencies. 

Williams et al. (2002) presented an adaptive-passive vibration controller using SMA elements in an ATVA. The 

device is manually tuned in order to achieve attenuation of vibration of the primary system across a range of 

frequencies. Williams et al. (2005) showed a continuously tuned SMA-ATVA as a novel adaptive–passive vibration 
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control device. The same idea was used in Rustighi et al. (2005a) that treated an SMA-ATVA made from a beam-like 

structure supported in its center. Numerical and experimental tests were performed showing that a change in the 

stiffness of the ATVA can be obtained by a temperature variation, which changes the Young’s modulus, resulting in a 

variation of the tuning frequency. Rustighi et al. (2005b) presented control algorithms for real-time adaptation of this 

SMA-ATVA device both theoretically and experimentally. In general, the literature discusses the effect of property 

change due to the temperature-induced phase transformation in SMA-ATVA devices, but does not treat the influence of 

the hysteretic behavior due to stress-induced phase transformation. 

This article deals with the nonlinear dynamics of an SMA-ATVA. Initially, a single-degree of freedom oscillator 

with an SMA element is analyzed showing the general characteristics of its dynamical response. Then, the analysis of 

an SMA-ATVA is carried out. This analysis starts by considering small amplitude vibrations in a way that the SMA 

element does not exhibit stress-induced phase transformation. Under this assumption, the SMA’s influence is only due 

to stiffness changes. This kind of analysis is the most common in literature and is followed by an investigation 

concerning the influence of the hysteretic behavior due to stress-induced phase transformation by considering a proper 

description of the thermomechanical behavior of SMAs. All results from the SMA-ATVA are compared with those 

obtained from the classical TVA, establishing a proper contrast between the devices and their capacity to promote 

vibration reduction. 

 

2. CONSTITUTIVE MODEL 

 

The thermomechanical behavior of shape memory alloys may be modeled either by microscopic or macroscopic 

phenomenological points of view. Its description is the objective of numerous research efforts that try to contemplate all 

behavior details (Lagoudas, 2008; Paiva & Savi, 2006). Here, a constitutive model that is built upon the Fremond’s 

model and previously presented by Paiva et al. (2005), Savi & Paiva (2005), Baêta-Neves et al. (2004) and Savi et al. 

(2002) is employed. This model considers different material properties for each phase and four macroscopic phases for 

the description of the SMA behavior. The tension–compression asymmetry, the plastic strain and the plastic-phase 

transformation coupling are incorporated in the original model. Nevertheless, for the sake of simplicity, these 

characteristics are not considered in this article. Therefore, the thermomechanical behavior of the SMA is described by 

the following set of equations: 
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Here ε is the total strain, T is the temperature, β1 and β2 are the volume fractions of martensitic phases, respectively 

related to tension and compression, β3 represents the volume fraction of austenite. Moreover, E = EM + β3 (EA - EM) is 

the elastic modulus while Ω= ΩM + β3 (ΩA - ΩM) is related to thermal expansion coefficient. Note that subscript A refers 

to austenitic phase, while M refers to martensite. Parameters Λ1=Λ2=Λ=Λ(T) and Λ3=Λ3(T) are associated with phase 

transformation stress levels. Parameter αh defines the horizontal width of the stress–strain hysteresis loop, while α 

controls the height of the same hysteresis loop. The terms πJn∂  (n = β1, β2, β3) are sub-differentials of the indicator 

function πJ  with respect to n. This indicator function is related to a convex set π , which provides the internal 

constraints related to the phases’ coexistence. With respect to evolution equations of volume fractions, ηηη == 21  and 

η3 represent the internal dissipation related to phase transformations. Moreover χJn∂  (n = β1, β2, β3) are sub-

differentials of the indicator function χJ  with respect to n. This indicator function is associated with the convex set χ , 

which establishes conditions for the correct description of internal sub-loops due to incomplete phase transformations. 

These sub-differentials may be replaced by Lagrange multipliers associated with the mentioned constraints (Savi et al., 

2002a). 

Concerning parameter definitions, linear temperature dependent relations are adopted for Λ and Λ3 as follows: 
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Here TM is the temperature below where the martensitic phase becomes stable. Usually, experimental tests provide 

information of Ms and Mf, temperatures where martensitic formation starts and finishes. This model uses only one 

temperature that could be an average value or alternatively, the Mf value. Moreover, 0L , L , AL0  and 
A

L  are 

parameters related to critical stress for phase transformation. 

In order to describe the characteristics of phase transformation kinetics, different values of η and η3 might be 

considered during loading, i.e. Lη  and L
3η , and unloading processes, i.e. Uη , U

3η . For more details about the 

constitutive model see Paiva et al. (2005) and Savi & Paiva (2005). All constitutive parameters can be matched from 

stress-strain tests.  

As it is well-known, SMA devices demonstrate the rate-dependence properties, i.e., their thermomechanical 

response depends on the rate of loading rate, see e.g., Shaw & Kyriakides (1995) and Yoon (2008). The adequate 

modeling of the rate-dependency of SMA’s can be performed by considering the thermomechanical coupling terms in 

the energy equation. Monteiro Jr. et al. (2008) discussed the thermomechanical coupling in this constitutive model 

showing that it has rate-dependence characteristics even when these coupling terms are neglected. This viscous 

characteristic of the model allows one to capture the thermomechanical coupling avoiding the integration of the energy 

equation. Auricchio et al. (2006) explores the same idea showing the difference between a viscous model and a rate-

independent model with thermomechanical coupling. Both models have the ability to describe pseudoelastic behavior in 

SMA wires. Hence, although martensitic transformations may be considered as non-diffusive for many practical 

applications, the model captures the rate-dependency from heat exchange which is useful for engineering purposes. 

Moreover, it is important to highlight that this rate dependency can be controlled by the proper choice of the model 

parameters. 

 

3. SINGLE-DEGREE OF FREEDOM SHAPE MEMORY OSCILLATOR 

 

Initially, the dynamical behavior of SMAs is analyzed by considering a single-degree of freedom oscillator (1DOF), 

which consists of a mass m attached to a shape memory element of length l and cross-sectional area A, and restitution 

force FR. A linear viscous damper, associated with a parameter c, is also considered. Moreover, the system is 

harmonically excited by a force F = F0 sin(ω t). Figure 1 presents an oscillator where the restitution force, FR, is 

provided by a general SMA element. 
 

 

m 

SMA Element 

FR 

c 

F(t) 

u 

 

Figure 1: Single-degree of freedom oscillator. 
 

The equation of motion of this oscillator may be formulated by considering the balance of linear momentum. The 

restitution force, AFR σ= , may be provided by an SMA element described by the constitutive equations presented in 

the previous section (Paiva et al., 2005). Therefore, the following equation of motion is obtained (Savi et al., 2008): 
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where volume fractions evolution β1 and  β2 are described by the constitutive model presented in the preceding section. 

In order to obtain a dimensionless equation of motion, the system’s parameters are defined as follows: 
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Note that dimensionless parameters and variables are defined considering some reference values for temperature 

dependent parameters. This is done by assuming a reference temperature, TR, where these parameters are evaluated. 

Parameters with subscript R are evaluated in this reference temperature. These definitions allow one to define the 

following dimensionless variables, respectively related to mass displacement (U), temperature (θ ) and time (τ): 
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Therefore, the dimensionless equation of motion has the form: 
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where derivatives with respect to dimensionless time are represented by τdd /)()( =′ . Besides the nonlinear SMA 

oscillator, an elastic single-degree of freedom oscillator is analyzed by replacing the SMA element by an elastic element 

where the restitution force is given by kuFR =  and its natural frequency is mkL /=ω . The equivalent elastic 

oscillator is governed by: 
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3.1. Numerical Simulation 

 

In order to deal with nonlinearities of the SMA oscillator equations of motion, an iterative procedure based on the 

operator split technique (Ortiz et al., 1983) is employed. Under this assumption, the fourth-order Runge–Kutta method 

is used together with the projection algorithm proposed by Savi et al. (2002) to solve the constitutive equations. The 

solution of the constitutive equations also employs the operator split technique together with an implicit Euler method. 

The calculation of βn (n = 1,2,3) considers that the evolution equations are solved in a decoupled way. At first, the 

equations (except for the sub-differentials) are solved using an iterative implicit Euler method. If the estimated results 

obtained for βn do not satisfy the imposed constraints, an orthogonal projection algorithm pulls their value to the nearest 

point on the domain’s surface (Paiva et al., 2005a). On the other hand, the numerical integration of the linear system 

uses the classical Runge-Kutta approach. 

For the numerical investigation it is considered a linear system with m = 1 and ωL=0.72ω0. In the case of the SMA 

oscillator, the same single-degree of freedom oscillatory system is considered, however, the linear elastic element is 

replaced by an SMA element. The SMA parameters used in numerical simulations are presented in Table 1. At this 

point, all simulations are carried out with T = 372K, a high temperature where austenite is stable for a stress-free state. 

Moreover, it is considered an SMA element with A=1.96×10
-5

m and l=50×10
-3

m. 

 

Table 1: SMA parameters 

EA 

(GPa) 

EM 

(GPa) 

α 

(MPa) 

αh 

 
0L  

(MPa) 

L  

(MPa) 

A
L0  

(MPa) 

A
L  

(MPa) 

54 42 330 0.048 0.15 41.5 0.63 185 

AΩ  

(MPa/K) 

MΩ  

(MPa/K) 

MT  

(K) 

Lη  

(MPa.s) 

Uη  

(MPa.s) 

L
3η  

(MPa.s) 

U
3η  

(MPa.s) 

 

0.74 0.17 291.4 1.0 2.7 1.0 2.7  

 

The numerical simulations starts by considering the undamped oscillators with ω =0.72ω0 and δ =0.01. Under these 

conditions, the linear system presents the well-known resonant response showed in Figure 2(a). The SMA oscillator 

response, however, tends to attenuate the amplitude response, as showed in Figure2(b), due to the hysteretic behavior of 

the SMA element. Figure 2(c) presents the correspondent stress-strain curve of the SMA oscillator.  

 
Figure 2: Undamped system response for ω=0.72ω0: (a) Linear oscillator; (b) SMA oscillator. (c) Stress-strain curve 

related to the SMA system. 

(a) (c) (b) 
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Considering now the damped situation (ξ=0.05) for both oscillators, the linear system response tends to stabilize in a 

specific amplitude, as showed in Figure 3(a). Once again the hysteretic behavior of the SMA oscillator tends to 

attenuate the amplitude response when compared to the linear system, as showed in Figure 3(b). Figure 3(c) presents the 

correspondent stress-strain curve of the SMA oscillator. 

 

 
Figure 3: Damped (ξ=0.05) system response for ω=0.72ω0: (a) Linear oscillator; (b) SMA oscillator. (c) Stress-

strain curve related to the SMA system  

 

Due to nonlinearities, the SMA oscillator response is far more complex than the linear oscillator response. In order 

to identify the resonant characteristics of the SMA oscillator, nonlinear resonant curves are plotted by increasing and 

decreasing forcing frequency. In both situations, the system is numerically integrated assessing the maximum steady 

state amplitude, as showed in Figure 4 for δ=0.008 and δ=0.012. It is evident that nonlinearities introduce dynamical 

jumps to the system response and that the variation in forcing amplitude changes the frequency where jumps occur. 

Moreover, it should be highlighted that the response of the SMA system tends to present smaller vibration amplitude 

when compared to those obtained by the elastic oscillator. This result shows some aspects of the SMA’s dynamical 

response. The next section addresses the use of SMA elements in secondary system used in vibration absorbers. 

 

 
Figure 4: Maximum amplitudes response for increased and decreased forcing frequency. (a) δ=0.008; (b) δ=0.012. 

 

4. NONLINEAR VIBRATION ABSORBERS 

 

The tuned vibration absorber (TVA) is a well-established vibration control device, which can be used to attenuate 

the vibration of a primary system at a particular forcing frequency. The goal of the passive vibration absorber is to 

dissipate energy of the primary system, reducing its vibration amplitudes in a specific forcing frequency. This goal is 

achieved by choosing the absorber natural frequency equal to the forcing frequency in which the vibration reduction is 

needed (Inman, 1989; Meirovitch, 1986). 

The adaptive TVA (ATVA) is an adaptive–passive vibration control device similar to a TVA but with adaptive 

elements that can be used to change the ATVA tuned condition. The aim of ATVAs with SMA elements is to attenuate 

primary system vibration amplitudes, not only for one specific forcing frequency, as occurs with the TVA, but for a 

range of frequencies exploring the temperature dependent characteristic of the SMAs. This section investigates the 

SMA-ATVA dynamics by establishing a comparison between two different absorbers: a TVA and an SMA-ATVA. The 

analysis of the SMA-ATVA is done by considering two different approaches. The first investigates small amplitude 

response that does not induce stress-induced phase transformation, which is the classical approach in literature. On the 

other hand, the second approach considers stress-induced phase transformations and therefore, is associated with energy 

dissipation due to hysteretic behavior.  

Figure 5 presents a two-degree of freedom system that represents a primary system, subsystem (m1, c1, k1), that is 

harmonically excited by an external force F = F0sin(ω t) and which vibration amplitudes wish to be reduced by using a 

secondary system that consists of a concentrated mass, m2, attached viscous damping, c2, and to an element with 

restoring force FR. This element could be an SMA element with length l and transversal section area A, defining an 

SMA-ATVA system or a linear element defining a classical TVA. 

 

(a) (c) (b) 

(a) (b) 
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Figure 5: Vibration absorber connected to a primary system. 

 

Both classical TVA and the SMA-ATVA systems may be described by the following equations of motion: 
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The description of the restitution force depends on the kind of absorber. The SMA-ATVA has a restitution force RF  

that is described by the constitutive equation presented in section 2. Therefore, the SMA-ATVA system has the 

following equations of motion together with the SMA constitutive equation: 
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In order to obtain a dimensionless equation of motion, system’s parameters are defined as follows: 
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These definitions allow one to define the following dimensionless variables, respectively related to mass 

displacements (U1,U2), temperature (θ ) and time (τ): 
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Moreover, the TVA has a linear restitution force, )( 12 uukF LR −= , that results in the following dynamical system: 
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1

12
1

m

k
L =ω  and 

2

2
2

m

kL
L =ω . 

This article considers a primary system with m1=5kg and Lkk 51 = . It is assumed a critical case where the primary 

system is under resonant conditions. Initially, the TVA is of concern and the mass and the stiffness values are chosen in 

such a way that the natural frequency of the primary system is the same as the single-degree of freedom oscillator 

considered in the last section: m2=1kg and lAEk RL /72.0 2 ×= . Figure 6 presents the response of the TVA primary 

system showing the maximum amplitudes as a function of the forcing frequency with δ=0.01. Two different damping 

coefficients are analyzed representing an undamped system (ξ1=ξ2=0) and a damped system (ξ1=ξ2=0.2). These results 
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are compared with the single-degree of freedom oscillator response. It can be observed that for 72.0=ϖ , critical 

resonant situation for the 1DOF oscillator, the absorber reduces the amplitude of the primary system response. 

Nevertheless, the new degree of freedom related to the secondary system introduces two resonant frequencies, identified 

in ϖω 58.01 =  and ϖω 9.02 = . The undamped system presents amplitudes that increase indefinitely in these 

frequencies while the damping tends to limit the amplitude increase as shown in Figure 6.  

 

 
Figure 6: Maximum amplitudes response of the 1DOF linear oscillator and of the TVA primary system with δ=0.01. 

Left: ξ1=ξ2=0; Right: ξ1=ξ2=0.2. 

 

The forthcoming analysis discusses the ATVA with an SMA element, showing how it can be useful for vibration 

reduction. Two different analyses are developed by exploring the hysteresis loop related to stress-induced phase 

transformations or the absence thereof. Initially, small amplitude movement is of concern and, therefore, the SMA 

element does not present stress-induced phase transformations. These phase transformations can also be avoided by 

using steel beam elements in parallel with SMA elements as have been observed by Williams et al. (2005). Under this 

condition, it is possible to alter the absorber natural frequencies due to the change of the element’s stiffness caused by 

temperature-induced phase transformations. In this regard, two different ranges of temperatures are considered: 

temperatures where martensite is stable (below TM), and temperatures where austenite is stable (higher than TA = 

307.5K). The same characteristics of the primary oscillator (m1=5kg, lAEk R /72.05 2 ××= ) are assumed and the 

vibration absorber has an SMA element with the same characteristics discussed in the previous section (m2=1kg, 
251096.1 mA −×=  and ml 31050 −×= ). Figure 7 presents a comparison between system responses for two different 

temperatures, showing that it is possible to change the range of frequencies where the primary system amplitude 

reduction is achieved by changing the temperature. This kind of behavior increases the frequency range where the 

ATVA can be efficiently used, which is an essential advantage when compared to the elastic TVA. 

 

 
Figure 7: SMA-ATVA primary system maximum amplitudes response for different temperatures.  

 

Although temperature-induced phase transformations can provide flexibility to the SMA-ATVA response, when 

compared to the classical TVA, the system response may be better explored by assuming large amplitudes of the SMA 

element that causes stress-induced phase transformations related to hysteretic behavior. The following analysis explores 

both temperature-induced phase transformation variation and hysteretic behavior due to stress-induced phase 

transformations as well.  

 

4.1. SMA-ATVA Exploring Stress-induced Hysteresis Loop 

 

At this point, we consider the general application of the SMA-ATVA where the amplitudes are no longer limited to 

small oscillations. Under this new condition, stress-induced phase transformations occur corresponding with the 

hysteresis loop. This behavior is related to strong nonlinearities that are usually associated with complex responses. The 

analysis is focused on the influence of temperature on the system response, but considering just high temperatures, 
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which means that the SMA element is initially at austenitic phase. Figures 8(a)-9(a) shows the SMA element stress-

strain curve at 340K and 540K, showing typical pseudoelastic behavior confirming this argument. Note that the increase 

in temperature causes the increase of the critical stress level where phase transformation begins to occur. Therefore, we 

can understand that the increase in temperature is related to the higher position of the hysteresis loop in the stress-strain 

space, and this behavior is useful for vibration reduction purposes.  

The system response is now analyzed in order to verify the influence of temperature variation on vibration 

reduction. The previous temperatures are of concern (340K and 540K). Figure 8 presents: (b) the displacement time 

history of the primary system and (c) the stress-strain curve of the SMA element. Parameters 58.0=ϖ , δ=0.0075, 

ξ1=ξ2=0.1 are assumed at T=540K. Under these conditions, the SMA element does not present phase transformation 

and, therefore, the amplitudes is not enough to pass through the hysteresis loop. This kind of behavior makes this 

response similar to the elastic TVA. Decreasing the temperature to T=340K, the hysteresis loop tends to be in a lower 

position on the stress-strain space as shown in Figures 8(a)-9(a). Therefore, the dynamical response of the system starts 

to dissipate energy due to the hysteresis loop and this large amount of energy dissipation tends to reduce the vibration 

amplitudes of the primary system. Figure 9(b-c) presents the system response represented by the displacement time 

history of the primary system and the stress-strain curve of the SMA element, confirming the expected behavior.    

 

 
Figure 8: (a) Stress-strain curve; (b-c) Primary system time response and stress-strain curve at T=540K. 

  

 
Figure 9: (a) Stress-strain curve; (b-c) Primary system time response and stress-strain curve at T=340K. 

 

Although we can achieve a more efficient vibration reduction due to hysteretic energy dissipation, dynamical jumps 

can make the system response different. A more detailed analysis of the system should be considered for a proper 

design of the absorber. Figure 10 establishes a comparison among the displacement time history of the primary system 

considering three different conditions: TVA, ATVA at T=540K and ATVA at T=340K. Two different frequencies are of 

concern showing how it can change primary system vibration absorption. 

 
Figure 10: TVA and ATVA primary system time responses.  

Left: ϖ=0.58; Right: ϖ=0.72.  

 

(a) (c) (b) 

(a) (c) (b) 
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The previous results can be better understood by considering the frequency domain response expressed in terms of 

the maximum amplitudes as a function of forcing frequency. Figure 11 presents this frequency domain response for the 

same results showed in Figures 8-10. It can be observed that the better performance of each absorber depends on 

temperature and excitation conditions. For some forcing frequencies it is noticed that the ATVA tends to present better 

performance, however, for different forcing frequencies the TVA can achieve smaller primary system amplitudes 

responses. Moreover, the ATVA at T=340K presents smaller amplitudes responses for forcing frequencies around ϖ 

=0.6 when compared to its performance at T=540K. This kind of behavior is due to the energy dissipation associated 

with hysteresis loop, which does not happen at the higher temperature. It should be highlighted that differences from the 

elastic TVA and the SMA-ATVA performances could be altered by temperature variations. 

 

 
Figure 11: TVA and ATVA primary system maximum amplitudes response for δ=0.0075 and ξ1=ξ2=0.1. 

 

5. CONCLUSIONS 

 

This article discusses the use of SMA elements in vibration absorbers. The thermomechanical behavior of SMAs is 

described by the constitutive model proposed by Paiva et al. (2005). Initially, a single-degree of freedom oscillator is 

presented in which the restitution force is given by the SMA element. The analysis of this system shows that the 

hysteretic behavior is related to high energy dissipation, indicating the use of SMA element in a vibration absorber. The 

next step of this work consists in the dynamical analysis of an adaptive absorber composed of a SMA element (ATVA). 

The behavior of this system is then compared with a passive absorber, composed of a linear element (TVA). The TVA 

attenuates the primary system vibration amplitudes in a chosen forcing frequency, however, two new resonance 

frequencies appear and must be avoided. The SMA-ATVA is capable of reducing the system response amplitudes not 

only in the initially chosen forcing frequency but also in these two new resonant frequencies that appear in the TVA. 

This happens as a consequence of the energy dissipation associated with the mechanical properties variation due to 

temperature-induced phase transformations and also related to the hysteretic behavior due to stress-induced phase 

transformation. SMA actuators have a great potential to be used in vibration control, nevertheless, it is important to 

mention that the strong nonlinear behavior of SMAs may introduce unusual, complex dynamical responses that should 

be further investigated during the design of the application. The parametric analysis developed in this paper shows 

different kinds of possibilities related to the response of SMA absorbers.  
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