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Abstract. This work presents a control design for a flexible structure using piezoelectric actuators.  The dynamic model 
of the flexible manipulator is obtained in a closed form through the finite element modal formulation. Piezoelectric 
actuators and sensors are added for controlling vibrations through feedback gain. An optimization problem is 
formulated for the location and size of the piezoelectric actuator and sensor. The naturals frequencies are calculated 
by the finite element method and the approximated eigenfunctions are interpolated by polynomials. Numerical 
experiments using Maple and Matlab were developed to verify the efficiency of the optimal control model.  
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1. INTRODUCTION  
 
     The need of lightweight structures has attracted the researchers attention to flexible structures. These lightweight 
structures are essential to improve the performance in mobile applications, such as flexible robots, aircrafts, and 
spacecrafts. The design of these structures requires a control system, which takes into account the interaction applied 
forces and the elastic modes. Structure vibration suppression depends not only on control design but also on the 
actuator/sensor selection and placement (Li et al. 2001) 
     A flexible beam optimization and control design is composed by two parts: control gain and the placement of 
actuators and sensors. The proposed control must stabilize the system against the motion induced vibration. Design of a 
smart structure system requires more than accurate structural modeling, since both structural dynamics and control need 
be considered (Xu and Koko, 2004) for active vibration control. A formulation of the dynamic equations, in modal 
basis, can be seen in Abreu et al. (2003). Optimal control design for location and size and feedback gain is presented in 
Li et al. (2001), Xu and Koko (2004) and  Hu and Ma (2006). This paper presents an optimal control design for 
actuators location, size and feedback gain, considering maximal system energy dissipation. Most papers considers just 
one actuator for the vibration suppression, but this paper considers two actuators and sensors with same size, suggesting 
a model for the optimality of their location and size. More than one actuator is suggested in Sun et al. (2004), but it 
considers linear velocity feedback and not optimal control.  
     Flexible structures can be built in complex geometries, which cannot be modeled by simple beam bending equations. 
In this work we propose a methodology for dealing complex geometry within the realm of the Euler-Bernoulli beam 
theory. 
     The use of finite elements analysis for the eigenvector determination is necessary since the analytical approach is 
cumbersome for complex non-prismatic beams.  However, since we wish to retain the simplicity of the analytic 
derivation of the control, the eigenvectors are interpolated from the nodal values with polynomials (Bathe, 1976). The 
effectiveness of this interpolation is checked by the Rayleigh quotient (Clive and Shames, 1973). 
      In flexible structure, a piezoelectric actuator is applied to single-link flexible manipulators in Choi and Shin (1996) 
and Cho et al. (1999) and applied to two-link flexible manipulators in Kim et al. (2001). These works considered 
control torque of the motor, determined based on the rigid link dynamics and the oscillations caused by the torque are 
suppressed by applying a feedback control voltage to the piezoelectric actuator. 
     In this work, we propose a piezoelectric control with feedback gain. The piezoelectric actuators and sensors are fixed 
without considering the adhesive influence. 
     The lower fundamental modes are responsible for the most of the tip displacement of the beam, therefore the first 
three eigenfunctions are considered in the work. The theory formulated in this work can be used for generic frames, but 
for simplification, the simulated model has one beam. Maple and Matlab codes were created to assess the optimality 
and control model efficiency.  
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2. DYNAMIC MODEL WITH PIEZOELECTRIC ACTUATOR AND SE NSOR 

 
      The deflections are obtained considering as a uniform beam with l length featuring a piezoceramic actuator bonded 
to the top face and piezofilm sensor bonded to the bottom face, as shown Fig.1.  
 

    
 

Figure1: A flexible structure with piezoelectric actuators and sensors. 
 
     This structure can be modeled as Euler-Bernoulli beam, with deflection ( )txd y ,  satisfying the partial differential 

equation 
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where bρ   is the density of the beam, ba  is the cross-section  and ( )bb IE  is the flexural rigidity constant of the link 

(Book, 1984), ( )
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 are external forces  actuating on  the beam.  For small displacements, the natural frequencies 

and modes can be considered independent of the external forces. r is the generalized location function expressed with 
the Heaviside functions, considering the first piezoelectric actuator  
 
      ( ) ( ) ( )( )aaa lxxhxxhxr +−−−= 11 ,                     (2) 

 
where la is the size of the actuator and xa1 is the actuator localization  on the beam. M(x,t) is the bending moment acting 
on the beam given by (Abreu et al. 2003) 
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where ( ) ( )txEtx c ,, εσ =  and 
( ) ( )tx

t

tVd
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,31 ε= , 31d  is the piezoelectric constant cE  is the elastic modulus of the 

piezoceramic, ct , ft  and bt   are the piezoceramic, piezofilm, and beam thicknesses, respectively. V(t) is the voltage 

applied to the actuator.  
     The evolution of the integral (3) results the following expression 
 
     ( ) ( )tVCtxM a=,                        (4) 

 
where Ca is a constant dependent on the composite system geometry computed by 
 

     ( )cbca ttbdEC += 312

1
 .                      (5) 

 
      Exploring the time and space separability on Eq. (1) by the modal analysis technique, the beam deflection can be 
expressed as (Meirovitch , 1967) 
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where each term in the general solution of Eq. (1) is the product of a time harmonic function of the term tj
i
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and for uniform cross section of a space eigenfunction of the form 
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where iω  is the ith natural angular frequency of the eigenvalue problem for the structure and m  is the finite number of 

eigenmodes considered in the truncated analysis. The determination of the constant coefficients kiC  uses clamped 

conditions at the beam base and mass boundary conditions representing the balance of bending moment and shearing 
force at the beam endpoint (De Luca et al. 1988). 
     This solution is possible when the structure geometry is prismatic or slightly non-prismatic. If the beam shape is 
irregular it is very difficult to obtain a closed form analytic solution. It is important to generalize the approach for other 
beam shapes, suggested on the next section. 
     By using the knowledge boundary conditions at cantilever beams and the solution (7), it can by evaluated from the 
Eq. (1) yields  
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     Multiplying Eq. (8), on both sides, by ( )xiϕ  and integrating (Abreu et al. 2003), it is obtained 
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      Considering the boundary conditions of the beam and computing the integration of the right side, it yields 
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modal damping D can be included in Eq. (10), as follows: 
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where iiD ωζ2=  and iζ  is modal damping. For n actuator/sensor the Eq. (11) can be extended to: 
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     The terms VCKDB a ,,,,  and δ  can be used in form of matrices. 

 
3. APPROXIMATING SOLUTIONS FOR EIGENFUNCTIONS 
 
      Since structure length l is usually much larger than the cross-sectional height and depth. Thereby, considering that 
the control can prevent large displacements, it is possible to apply the Euler-Bernoulli theory for small displacements.    
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     Assuming free vibration in the absence of external forces on Eq. (6), the Eq. (1), without considering external forces, 
is rewritten as 
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     Approximating ϕ  by finite element method, we have 
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where v  is a arbitrary variation of  ϕ  with ( ) 00 =v . 

    We assume admissible solution of the form ∑
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    Recalling that bb IE   is constant on each finite element (Bathe, 1976), and using integration by parts and substituting  

ϕ  and v in the results, we derive the expressions of the stiffness, mass and damping matrices, respectively  
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where ψ  are the elementwise interpolation functions and βα ,  are the Rayleigh damping constants.  Usually  four 

cubic Hermite polynomials are used as interpolation functions in each two-node finite element  so the unknowns  of  the 
approximated problem are  nodal displacements and its derivatives. The mass matrix can be further approximated by its 
lumped (diagonal) form. Then the natural modes and frequencies can be computed by the following matrix eigenvalue 
problem 
 

( ) 0=MK ϕ2ω− ,                                 (16) 

 

where 2ω  are the characteristic values from the Eq. (16). The eigenvectors represent the vibration modes in nodal 
coordinates.  
     Considering that the control algorithm requires continuous twice differentiable eigenfunctions,   it is necessary to 
create a continuous interpolation  from the discrete values. The natural choice would be using the same elementwise 
Hermite polynomials used by the finite element approximation, but  the eigenfunctions ϕ  presents large oscillations, 

due to excessive sensitivity to the numerical imprecision, specially of the derivatives. Fig. 2a,b shows these oscillations 
for the first and second mass-normalized eigenfunction interpolation.  

 

                         
(a)     (b)            (c)    (d)            

 Figure 2. Eigenfunctions which represent the vibration modes of a link fixed on x=0 . (a) and (c) are the first mode and 
(b) and (d) the second mode. (a) and (b) are the eigenfunctions generate through the interpolation with Hermite 

polynomial in each element. (c) and (d) are the eigenfunctions generate through the interpolation with mixed Lagrange-
Hermite polynomials. 

 
      It is possible to smooth these disturbances by choosing another set of interpolation functions. In this case, we chose 
to forgo the elementwise Hermite approximation for a global interpolation ignoring the derivatives of the inner nodes. 
Three alternatives are considered: interpolating all nodes with a single Hermite approximation, a mixed Hermite-

1ϕ  2ϕ  
1ϕ  

2ϕ  
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Lagrange set of polynomials which satisfies the displacements and derivatives at the outermost nodes, but only the 
displacements at the inner nodes, and finally a least-squares polynomial regression. 

     For computing the coefficients by least-squares it is necessary to considerate the pseudoinverse operator A+ 

(Luenberger , 1976). This operator has the following properties: if ATA is invertible, then ( ) T1T+ AAA=A
−

; if AA T is 

invertible, then ( ) 1TT+ AAA=A
−

. The coefficients from the polynomials are calculated from the results of the linear 

system y=Ax , hence yA=x + . The matrix A comes from the finite element mesh and y from the eigenvectors values 

and we choose an order of the polynomials and a number of points at the mesh. 
     All there three options can eliminate the oscillations on the eigenfunctions, but might be inadequate for use in the 
control solution, since the  differentiation and the integration can generate different results. For this way, it is interesting 
adopt an error criterion. This work adopts the Rayleigh Quotient (Clive and Shames, 1973) as the error criterion, which 

can be expressed for analytic functions as ∫∫ 
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where in this case ϕ  are the eigenvectors. 

     In this work we have tested the three approximation schemes proposed. Results show that they can eliminate 
oscillations, but with different effect on the Rayleigh Quotient. Fig 2c,d shows the smoothed resulting mode shape, free 
from the oscillations for the mixed Lagrange-Hermite formulation.     
     The eigenvalue error of the smoothed eigenvectors, and the original eigenvalue  from the Eq. (16)  are around 1Hz 
for the first and the second mode and 2Hz for the third mode, which means  around 5% for the first vibration mode and  
smaller for the second and third. 
     For geometric complex structures, the complete Hermite approximation gives smaller eigenfunctions errors, but it 
have to be tested for each case.  
     The beam was considered flexible and non-prismatic, therefore subject to motion induced vibration, which affects 
the trajectory of the endpoint. This beam has a linearly varying cross section. 
     An elementwise prismatic approach is possible for this non-prismatic beam. Specifically computation has to be 
considered. For the mass and for the flexural stiffness on each element, without piezoelectric material, there is 
considered an average on each element, the formulation of this approximation can also be found in software Ansys. For 
the elements, there is piezoelectric material (Crawley and De Luis, 1987), the flexural stiffness is considered as 
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where dn is the distance from the bottom of the piezofilm sensor to the neutral axis.  
     If the elements are sufficiently small, the finite element model can represent well the real non-prismatic model of the 
structure. 

      
4. PIEZOELECTRIC VIBRATION CONTROL 

 
In this work it is propose a feedback control voltage to the piezoceramic actuator (Crawley and De Luis, 1987), 

expressed  as 
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, where cK  is the feedback gain. ( )tV f
&  is the voltage generated 

by the piezofilm sensor, obtained by integrating the electric charge developed at a point on the piezofilm, expressed as: 
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where 2
31k  is the electromechanical coupling factor, C is the capacitance of the film sensor and 31g   is the piezoelectric 

stress constant (Banks et al. 1996). The resulting control law for the system Eq. (12) is expressed as  
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    The inclusion of the piezoelectric material on the flexible links is accounted by defining the beam properties with 
Heaviside functions to change the geometry and stiffness where the material is added. The computation of the 
eigenfunctions is accomplished as shown in section 3. 
 
5. OPTIMAL CONTROL DESIGN FOR LOCATION AND SIZE OF PIEZOELECTRIC MATERIAL AND 
VIBRATION CONTROL  
 
     Controlling structural vibration depends not only on the control law, but also on the selection and location of the 
actuators and sensors (Denoyer and Kwak, 1996). In this work we propose optimal control for the actuator and sensor 
position and sizing optimization, based on maximizing the control energy dissipation (Li et al. 2001). This procedure 
takes into account the actuators and sensors mass and stiffness, and their effect on the mechanical behavior of the 
structure. This influence is combined to the control characteristics to obtain an objective function that depends on the 
actuators location and sizing and the control gain.  
     The dynamic of the flexible link with m piezoelectric sensors and actuators is expressed in Eq. (20), in terms of 
modal coordinates. 
     The total energy stored in the system (De Luca et al. 1988), can be considered a Lyapunov function as 
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where T is the kinetic energy, U is the potential energy, δ  are the generalized coordinates, associated with beam 
deflections.      
     It is easily to show, that the derivate from this function (21) is negative definite, differentiating it with respect to time 

and simplifying with the term 0
2

1 =δBδ &&&
T , since the matrix B is time independent for the cantilever beam. Isolating 

δB &&  on Eq. (20) and using the Eqs. (18) and  (19) yields 
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where the first and the second terms describe the removed system energy rates by the internal damping and by the 
control feedback, respectively. 
     Integrating the Eq. (22) we obtain 
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where W(t0) denote the initial energy of the system, Wf and Wc represent energy dissipated by internal damping and by 
the control action, respectively. 
     For effective vibration suppression, it is reasonable to derive a method to increase the energy dissipated by the 
control. We observe that Wc depends on the locations and the sizing of the actuators and feedback matrix gain Kc. 
Therefore, Wc can be used as an optimization criterion for control system to determine location and sizing of actuator 
and feedback gains.  
     For determining Wc, it can be write the Eq. (20) can be written in state-space form as 
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where Cs is the output matrix. 
      A state feedback rather that output feedback is adopted to enhance the control performance. The quadratic cost 
function for the regulator problem is considered for minimizing the energy dissipation  
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where Q is positive semidefinite weighting matrix, and their elements are selected connecting output of the sensor 
feedback with the input on the actuator 
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     The feedback requires a full knowledge of states 
 
     yKV c−= ,                      (27) 

 
     The Eq. (25) can be reduced, by standard-state transformation techniques, to the expression 
  

     00PxxT
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In this equation x0 are the initial conditions.      
     The determination of the matrix P can be reduced to solving a matrix Lyapunov equation 
 

     0QPAPA cc =++T , 

     scc CHKAA −= .                                                     (29) 

 
     It is possible observe that Wc depends on the location xa and the size la of the actuators, and feedback gain Kc. 
Therefore, Wc can be used for optimization criterion and control of the induced vibration on the beam. The optimization 
is for location and size of the actuator and the control with feedback gain. 
 
6. RESULTS 
 
     The physical system considered in this work is composed by cantilevered flexible beam, but the geometry was 
generalized to allow non-prismatic designs.  The beam was considered flexible and non-prismatic, therefore subject to 
motion induced vibration, which affects the trajectory of the endpoint. 
     This work contains significant improvements with respect to the previously published work Li et al. (2001), Xu and 
Koko (2004) and Abreu et al. (2003). Three vibration modes are used in the simulation and two actuators and sensors, 
instead of one, used in the other referenced works. In fact, it is a known fact that the best  location for one actuator is on 
beginning of the fixed size of the beam, since there is more stress induced by the first and most significant mode. This 
work searches for the best location when two actuators are used. 
      The results were obtained using a code implemented in Maple and Matlab software. In Maple was obtained the 
optimum location and size for the two actuator/sensor. A finite element program was implemented for computing the 
eigenfunctions, as show in section 3. After computing the optimal location and size in Maple, a control procedure was 
simulated in Matlab, where the fourth-order Runge-Kutta method with 1=∆t ms was used to integrate the equations for 
a half-second simulation.  
     We present the mechanical and geometrical properties of the piezoelectric materials (Cho et al. 1999, Kim et al. 
2001) used in this work.  

 
Table 1. Dimensional and mechanical properties of the aluminium beam and piezoelectric materials. 

 
 Young’s 

modulus (GPa) 
Thickness 

(mm) 
Density (kg m-3) Width (mm) Length (m) 

 
Aluminum 

beam 
65 at one side: 1 

at other: 0.6 
2890 25 1 

Piezoceramic 
(PZT) 

 

64 0.815 7700 25 0.4 

Piezofilm 
 

2.0 0.028 1780 25 0.4 

Capacitance of the piezofilm(C) - 380 pF cm-2; piezoelectric stress constant of the piezofilm(g31) - 216 x 10-3 (V m-1) 
(N m-2 )-1; electromechanical coupling factor(k31) - 0.44; damping factors - 03.0,07.0 21 == ζζ  and 01.03 =ζ . 

 
     This table presents the size of the actuator and sensor placement, but this geometry was computed in the next 
subsection, for the best size a location in a discrete mesh. 
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6.1. Decision of size and location of two piezoelectric actuator and sensor 
 
     The optimization problem is formulated as 
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     In the constraints of the problem (30) it can be note that the size and location of actuators/sensors can not exceed the 
size of the structure.  
     The results of the simulation in Maple are show in Fig. 3. The best location and size were chosen from a discrete set 
of positions [0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.60,0.65]. Each value of this set represents the distance between the 
beginning of the first actuators/sensors to the beginning of the second and the first two was considered fixed on the 
beginning of the structure. Also a set of sizes was chosen as [0.01,0.025,0.05, 0.1,0.15,0.2], where each value represents 
the size of the actuators/sensors, considering both sizes equal. The initial conditions are ],0.01,0.01[0,0,0,0.1=0x . 

Heaviside functions were used for compute the different properties of each piece on the structures. 

 
 

Figure 3: Cost function of dissipated energy by the system since the control action and the actuator location and size. 
    
    In the Fig. 3, the numbers from 1 to 6 and 1 to 9 corresponded to the vectors of size and position respectively. For 
more clarity, the number 6 from the size axis corresponds to 0.2 of the vector of size. 
     It can be observed from the Fig. 3 that the best position, for the control effectiveness, is merge both actuators on the 
beginning of the structure, or on 0=x . The best size is the largest. Now, these results can be used for simulating the 
control of the induced vibrations.  
 
6.2 Vibrations control aspects 
 
     For the induced vibration control were used the equations of feedback gain (27) and the integration of state Eq. (24).  
       The tree modes of vibration, without control, are shows in Fig 4. 
 

 
 

Figure 4: Response of the system without control. 
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     The frequencies computed are 17Hz, 66Hz, 144Hz, respectively. The piezoelectric material size and location change 
the frequencies, because this, it was chosen the best location and position from section 6.1. 
     The control gain can have large variations which affects significantly the control effectiveness. Two examples that 
show the control system and the effect of the control gain Kc are presented. In Fig. 5, the matrix Q, which is dependent 
on Kc, is computed as Q=diag(0,0,0,500, 500,500) and in Fig. 6 with Q=diag(0,0,0,5000, 5000,5000) .  
 

 
 

Figure 5: Response of the system with control. 
 

 
Figure 6: Response of the system with control. 

 
     With this result is possible observe that more control gain can help on the effectiveness of the vibration control. It 
can be see that on Fig. 6 the modal displacement stopped before than on Fig. 5.  
     An important aspect, that was not considered in this work, is the fact that the strain of the piezoelectric actuator is 
limited, but the chosen feedback gains do not extrapolate these limitations. 
     These simulations show competitive results with other published approaches (Xu and Koko, 2004, Sun et al. 2004).  
     The feedback gain V(t) from the control system show in Fig. 6, for the first vibration mode, is shown in Fig. 7.  

 
 

Figure 7: Closed-loop control voltage response for the first mode of the beam in vibration. 
      
   It is possible to observe in Fig. 7 that the force applied of the actuator produces a moment in contraposition of the 
beam deflection. 
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7. CONCLUSIONS AND CONSIDERATIONS 

 
In this work we introduced a technique for optimization of location and size of piezoelectric material and vibration 

control of flexible beam. This technique uses the optimal control strategies for choosing the best location and size for 
some given discretization. Piezoelectric actuators and sensors are added to the system to control the frequency 
vibrations considering that the properties of the structure changes where the actuators and sensors are added. This 
technique can be used to build light structures with controlled vibration levels, as manipulators with flexible links, while 
preserving the stiffness and precision. It also reduces the energy consumption and suits the needs for aerospace systems 
or for tasks that demand lightness, precision and agility.   
     For geometric complex beams, the eigenvectors are approximated using polynomial interpolation spanning all finite 
elements at the beam. The Rayleigh quotient was used for the validity of the technique. Hermite polynomials 
interpolation proved to be the best approximation for this case.  
     The simulations for the control system confirmed effectiveness for this control technique. The numerical results 
indicate that the location and size of the actuators/sensors may have significant influence on the integrated system 
control performance. Also the feedback gain affects directly the control efficiency. 
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