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Abstract. Thiswork presents a control design for a flexible structure using piezoelectric actuators. The dynamic model
of the flexible manipulator is obtained in a closed form through the finite element modal formulation. Piezoelectric
actuators and sensors are added for controlling vibrations through feedback gain. An optimization problem is
formulated for the location and size of the piezoelectric actuator and sensor. The naturals frequencies are calculated
by the finite element method and the approximated eigenfunctions are interpolated by polynomials. Numerical
experiments using Maple and Matlab were devel oped to verify the efficiency of the optimal control model.
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1. INTRODUCTION

The need of lightweight structures has attédhe researchers attention to flexible structuféese lightweight
structures are essential to improve the performancmobile applications, such as flexible robotsgcrafts, and
spacecrafts. The design of these structures regaireontrol system, which takes into account theréction applied
forces and the elastic modes. Structure vibratigppsession depends not only on control design ksd an the
actuator/sensor selection and placemengt(al. 2001)

A flexible beam optimization and control desity composed by two parts: control gain and trecerhent of
actuators and sensors. The proposed control nalstiz¢ the system against the motion induced tidma Design of a
smart structure system requires more than accstiatetural modeling, since both structural dynanaied control need
be considered (Xu and Koko, 2004) for active viioratcontrol. A formulation of the dynamic equations, in modal
basis, can be seen in Abretal. (2003). Optimal control design for location angesand feedback gain is presented in
Li et al. (2001), Xu and Koko (2004) and Hu and Ma (200B)is paper presents an optimal control design for
actuators location, size and feedback gain, corisiglenaximal system energy dissipation. Most pagerssiders just
one actuator for the vibration suppression, b flaiper considers two actuators and sensors wite si&e, suggesting
a model for the optimality of their location andesi More than one actuator is suggested in é&wah. (2004), but it
considers linear velocity feedback and not optiowaitrol.

Flexible structures can be built in complepmetries, which cannot be modeled by simple beamibg equations.
In this work we propose a methodology for dealiognplex geometry within the realm of the Euler-Bauticdbeam
theory.

The use of finite elements analysis for thgeevector determination is necessary since theyticsll approach is
cumbersome for complex non-prismatic beams. Howesiace we wish to retain the simplicity of theabpic
derivation of the control, the eigenvectors arernpblated from the nodal values with polynomialsitti2, 1976). The
effectiveness of this interpolation is checked liy Rayleigh quotient (Clive and Shames, 1973).

In flexible structure, a piezoelectric actuatoapplied to single-link flexible manipulators in Glamd Shin (1996)
and Choet al. (1999) and applied to two-link flexible manipuletain Kim et al. (2001). These works considered
control torque of the motor, determined based enritid link dynamics and the oscillations causgdhe torque are
suppressed by applying a feedback control voltaghed piezoelectric actuator.

In this work, we propose a piezoelectric cointvith feedback gain. The piezoelectric actuatonrd sensors are fixed
without considering the adhesive influence.

The lower fundamental modes are responsibleéh® most of the tip displacement of the beamietfoee the first
three eigenfunctions are considered in the worle fhleory formulated in this work can be used fargge frames, but
for simplification, the simulated model has onerhedaple and Matlab codes were created to assessptimality
and control model efficiency.
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2. DYNAMIC MODEL WITH PIEZOELECTRIC ACTUATOR AND SE NSOR

The deflections are obtained considering asiform beam witH length featuring a piezoceramic actuator bonded
to the top face and piezofilm sensor bonded tdotittom face, as shown Fig.1.

piezoelectric
actuators

piezoelectric
Z Sensors cross-saction

Figurel: A flexible structure with piezoelectrictaators and sensors.

This structure can be modeled as Euler-Belinbahm, with deflectiondy(x,t) satisfying the partial differential
equation
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where g, is the density of the beana, is the cross-section ar(chIb) is the flexural rigidity constant of the link

3°r

(Book, 1984),M (X't)aT are external forces actuating on the beam.skall displacements, the natural frequencies
X

and modes can be considered independent of thenakferces.r is the generalized location function expressedh wit
the Heaviside functions, considering the first pedectric actuator

r(x) = hlx =)= h(x= (a1 +1,)). @)

wherel, is the size of the actuator axgd is the actuator localization on the bednfx,t) is the bending moment acting
on the beam given by (Abrestial. 2003)

ty 2+t t, 2+t
M(x,t): J-a(x,t)bxdx: .[ Ecd31—v(t)bxdx, 3)
t,/2 t,/2 ¢
where J(x,t): Ecs(x,t) and d31—v(t):£(x,t), d,, is the piezoelectric constarf, is the elastic modulus of the

C
piezoceramict., t; andt, are the piezoceramic, piezofilm, and beam thiskas, respectively(t) is the voltage

applied to the actuator.
The evolution of the integral (3) results thkbowing expression

M (xt)=C,V(t) (4)
whereC, is a constant dependent on the composite systemagey computed by

1
Ca ZE Ecd31b(tb +tc) . (5)

Exploring the time and space separabilityeon (1) by the modal analysis technique, the beafiection can be
expressed as (Meirovitch , 1967)
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where each term in the general solution of Eqigthe product of a time harmonic function of teem J, (t) =eldt
and for uniform cross section of a space eigenfoncif the form

2
9. (%) =Cy sm(’sz) ] Cy; co{’(og) x] Cy sinr{fg) x] Cyi cos{'(og)x], (7)

where ¢y is theith natural angular frequency of the eigenvalue ferotfor the structure anth is the finite number of
eigenmodes considered in the truncated analysie. détermination of the constant coefficier@g uses clamped
conditions at the beam base and mass boundaryticorsdrepresenting the balance of bending momedtshaearing
force at the beam endpoint (De Ligtal. 1988).

This solution is possible when the structure geoynist prismatic or slightly non-prismatic. If theedm shape is
irregular it is very difficult to obtain a closedri analytic solution. It is important to generalihe approach for other
beam shapes, suggested on the next section.

By using the knowledge boundary conditionsattilever beams and the solution (7), it can bglwated from the
Eq. (1) yields

> v (ALY B (9 =M () ®

Multiplying Eq. (8), on both sides, b,gg(x) and integrating (Abresat al. 2003), it is obtained

| I
pbab.[foiz(x)dxgi(t)"'Eblbj-ﬂoilv(x ¢, (X, (t) =M (x.t I% —dx )
0 0

Considering the boundary conditions of tharbend computing the integration of the right sitlgields

Cav(t)

B3 (1)+Ka(0)="""

[#/(xeq +12) =8/ (xe0 ). {10

|
where B:.[(piz(x)dx is the mass of the beam aid= EbIbJ- V(x); (x)alx ﬂﬁ’i“ is the stiffness. The term of
P8y Py

modal dampind can be included in Eq. (10), as follows:

c.Vv(t)

B3 (1)+D4t)+Ka()==>""

[#/(xeq +12) = 8/ (xea )] (11)

where D =2{;«y and {; is modal damping. Far actuator/sensor the Eq. (11) can be extended to:

N . 5 CyV t
030+ 050+ k0= 3 syl 1)l a2
j=1 Ppdy,
The termsB,D,K,C,,V and d can be used in form of matrices.

3. APPROXIMATING SOLUTIONS FOR EIGENFUNCTIONS

Since structure lengths usually much larger than the cross-sectionajhtteand depth. Thereby, considering that
the control can prevent large displacements,pbissible to apply the Euler-Bernoulli theory foradhdisplacements.
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Assuming free vibration in the absence of mxkforces on Eq. (6), the Eq. (1), without coesidg external forces,
is rewritten as

2 2
%(Ebl b%) =~ Pp3p P . (13)

Approximating@ by finite element method, we have

J-d—Z(EbI bd—f)vdx+J-pbaba)2v¢ =0, Ov (14)
5 X dx 0

wherev is a arbitrary variation ofg with v(O) =0.

N N
We assume admissible solution of the fogns ZQ,(//i andv = Zvjwj , Where Q , V; are scalar coefficients
i=1 j=1
andN is the number of basis functio{lﬁl,(//z,...,(//N}.
Recalling thatE,l,, is constant on each finite element (Bathe, 198%), using integration by parts and substituting
@ andvin the results, we derive the expressions of tiffness, mass and damping matrices, respectively

d?y; 4%y,
dx?  dx?

| |
0 0

where ¢ are the elementwise interpolation functions ang3 are the Rayleigh damping constants. Usually four
cubic Hermite polynomials are used as interpolatiorections in each two-node finite element souhknowns of the
approximated problem are nodal displacementstarderivatives. The mass matrix can be further @gprated by its
lumped (diagonal) form. Then the natural modes faaguencies can be computed by the following matigenvalue
problem

[k -w?Mp =0, (16)

where w? are the characteristic values from the Eq. (1) ®igenvectors represent the vibration modes @aino
coordinates.

Considering that the control algorithm regsicontinuous twice differentiable eigenfunctionst is necessary to
create a continuous interpolation from the discretlues. The natural choice would be using theesalmmentwise
Hermite polynomials used by the finite element appnation, but the eigenfunctiong presents large oscillations,

due to excessive sensitivity to the numerical imjsien, specially of the derivatives. Figa,B shows these oscillations
for the first and second mass-normalized eigenfandhterpolation.

5 5

4 4

3 3
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Figure 2. Eigenfunctions which represent the \tibramodes of a link fixed or=0 . (a) and(c) are the first mode and
(b) and(d) the second modéa) and(b) are the eigenfunctions generate through the intatipa with Hermite
polynomial in each elemen(t) and(d) are the eigenfunctions generate through the inkatipa with mixed Lagrange-
Hermite polynomials.

It is possible to smooth these disturbangeshmosing another set of interpolation functidnsthis case, we chose
to forgo the elementwise Hermite approximationdoglobal interpolation ignoring the derivativestbé inner nodes.
Three alternatives are considered: interpolatirignatles with a single Hermite approximation, a rdixdermite-
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Lagrange set of polynomials which satisfies thepldisements and derivatives at the outermost ndulgspnly the
displacements at the inner nodes, and finally stdsquares polynomial regression.
For computing the coefficients by least-sqsaiteis necessary to considerate the pseudoinwsuseator A

(Luenberger , 1976). This operator has the follgwnoperties: ifATA is invertible, ther A* = (ATA)_lAT (if AATis

invertible, thenA™ = AT(AAT)_1 . The coefficients from the polynomials are caltedafrom the results of the linear

systemAx =y, hencex = A’y . The matrixA comes fronthe finite element mesh aydrom the eigenvectors values

and we choose an order of the polynomials and @euwf points at the mesh.

All there three options can eliminate the lstions on the eigenfunctions, but might be inadeg for use in the
control solution, since the differentiation ané thtegration can generate different results. Rigrway, it is interesting
adopt an error criterion. This work adopts the Reyl Quotient (Clive and Shames, 1973) as the eritarion, which

[ 2 \2 [ T
can be expressed for analytic functionw? = J-Ebl b(ij dX/.[pbab(/)de and the discrete form iw? = q)T I\}jl(/) ,
X ¢ Mo
0 0

where in this cas@ are the eigenvectors.

In this work we have tested the three appraxiom schemes proposed. Results show that theyeliainate
oscillations, but with different effect on the Reigh Quotient. Fig &d shows the smoothed resulting mode shape, free
from the oscillations for the mixed Lagrange-Hemgrfdrmulation.

The eigenvalue error of the smoothed eigevsctnd the original eigenvalue from the (16) are aroundHz
for the first and the second mode &tk for the third mode, which means around 5% forfitst vibration mode and
smaller for the second and third.

For geometric complex structures, the comptédemite approximation gives smaller eigenfuncti@nsors, but it
have to be tested for each case.

The beam was considered flexible and non-g@igmtherefore subject to motion induced vibratiaich affects
the trajectory of the endpoint. This beam has esdlily varying cross section.

An elementwise prismatic approach is possibtethis non-prismatic beam. Specifically compuatihas to be
considered. For the mass and for the flexural r&#6 on each element, without piezoelectric matettiare is
considered an average on each element, the foionlaft this approximation can also be found inwafte Ansys. For
the elements, there is piezoelectric material (Ggawnd De Luis, 1987), the flexural stiffnessamsidered as

3 2 3 2 t3b
El = EC[%+tcb(tf +t_;_tb_dnj ]"'Eb[%*’tbb(tf +t3b_dnj ]+Ef [t"’tfb(tf _dn)zi, (17)

whered, is the distance from the bottom of the piezofilnsor to the neutral axis.
If the elements are sufficiently small, theiti element model can represent well the realprismatic model of the
structure.

4. PIEZOELECTRIC VIBRATION CONTROL

In this work it is propose a feedback control vgitato the piezoceramic actuator (Crawley and Des,L1987),
expressed as

V()= -K V¢ (), (18)

n

and considerings, = Z“ix[ﬁ(xaj +|a)—¢'(xaj )] where K, is the feedback gaifV; (t) is the voltage generated
i1 Pop

by the piezofilm sensor, obtained by integrating ¢fectric charge developed at a point on the filezcexpressed as:

kzb

V(t)=C., 0=
f() S a1

d,J, (19)

where k321 is the electromechanical coupling factGris the capacitance of the film sensor agg is the piezoelectric
stress constant (Banksal. 1996). The resulting control law for the system(12) is expressed as
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B (t) +Da(t) + K8(t) = G,V(t). (20)

The inclusion of the piezoelectric material the flexible links is accounted by defining the lmeproperties with
Heaviside functions to change the geometry andneté where the material is added. The computatiothe
eigenfunctions is accomplished as shown in se@&ion

5. OPTIMAL CONTROL DESIGN FOR LOCATION AND SIZE OF PIEZOELECTRIC MATERIAL AND
VIBRATION CONTROL

Controlling structural vibration depends naofyoon the control law, but also on the selectiowl éocation of the
actuators and sensors (Denoyer and Kwak, 1996hisnwork we propose optimal control for the actwagnd sensor
position and sizing optimization, based on maxingzihe control energy dissipation (& al. 2001). This procedure
takes into account the actuators and sensors nmaksstéfness, and their effect on the mechanic&lab®r of the
structure. This influence is combined to the cdntiwracteristics to obtain an objective functibattdepends on the
actuators location and sizing and the control gain.

The dynamic of the flexible link witin piezoelectric sensors and actuators is expresséd).if(20), in terms of
modal coordinates.

The total energy stored in the system (De laieh 1988), can be considered a Lyapunov function as

W=T+U =%$TBS+%6TK6>O, (21)

where T is the kinetic energyy is the potential energyp are the generalized coordinates, associated veithmb
deflections.
It is easily to show, that the derivate frdwstfunction (21) is negative definite, differertitay it with respect to time

and simplifying with the term%STBé =0, since the matridB is time independent for the cantilever beam. ksuda

B& on Eq. (20) and using the Egs. (18) and (19)giel
W=T+U=-6"D6-6"G,K_CH<0, (22)

where the first and the second terms describe éhved system energy rates by the internal dampingby the
control feedback, respectively.
Integrating the Eq. (22) we obtain

W(t,) =W, +W, = j 5T Dédt + j $7G K C.bdt, (23)

fo f

whereW(ty) denote the initial energy of the syste,andW, represent energy dissipated by internal dampingbgnd
the control action, respectively.

For effective vibration suppression, it is gemable to derive a method to increase the enegpjpdted by the
control. We observe thal; depends on the locations and the sizing of theasmtsi and feedback matrix ga.
Therefore W, can be used as an optimization criterion for cdrdystem to determine location and sizing of actuat
and feedback gains.

For determinind\,, it can be write the Eq. (20) can be written atstspace form as

X =AX +HV 0 I 0
; A=l el H= (24)
y =C.x -B"K -B™D B7G,

whereC; is the output matrix.
A state feedback rather that output feedackdopted to enhance the control performance. quaairatic cost
function for the regulator problem is consideredrfonimizing the energy dissipation

W, = j xTQxdt , (25)

to
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where Q is positive semidefinite weighting matrix, and ithelements are selected connecting output of #resar
feedback with the input on the actuator

o o -
=9 G.K.C.!| (26)

The feedback requires a full knowledge ofestat

V=-Key, (27)
The Eq. (25) can be reduced, by standard-stateformation techniques, to the expression

W, =X¢PXg . (28)

In this equatiorx, are the initial conditions.
The determination of the matikcan be reduced to solving a matrix Lyapunov equati

AIP+PA,+Q=0,
A.=A-HK C,. (29)

It is possible observe th¥f, depends on the location and the sizé, of the actuators, and feedback g#in
Therefore W, can be used for optimization criterion and contrfathe induced vibration on the beam. The optiniizat
is for location and size of the actuator and thatrmd with feedback gain.

6. RESULTS

The physical system considered in this workasnposed by cantilevered flexible beam, but thenggtry was
generalized to allow non-prismatic designs. Thanbevas considered flexible and non-prismatic, floeeesubject to
motion induced vibration, which affects the tragegtof the endpoint.

This work contains significant improvementghaiespect to the previously published worketal. (2001), Xu and
Koko (2004) and Abreet al. (2003). Three vibration modes are used in the lsitian and two actuators and sensors,
instead of one, used in the other referenced wdmkigct, it is a known fact that the best locatfor one actuator is on
beginning of the fixed size of the beam, sincedtisrmore stress induced by the first and mostifsignt mode. This
work searches for the best location when two actsare used.

The results were obtained using a code impiged in Maple and Matlab software. In Maple wativied the
optimum location and size for the two actuator/sené finite element program was implemented fompating the
eigenfunctions, as show in section 3. After computhe optimal location and size in Maple, a cdrnprocedure was
simulated in Matlab, where the fourth-order Runget& method withAt =1ms was used to integrate the equations for
a half-second simulation.

We present the mechanical and geometricalegptigs of the piezoelectric materials (Cétoal. 1999, Kimet al.
2001) used in this work.

Table 1.Dimensional and mechanical properties of the alumirbeam and piezoelectric materials.

Young's Thickness Density(kg m®) Width (mm) Length (m)
modulus (GPa) (mm)
Aluminum 65 at one side: 1 2890 25 1
beam at other: 0.6
Piezoceramic 64 0.815 7700 25 0.4
(PZT)
Piezofilm 2.0 0.028 1780 25 0.4

Capacitance of the piezofi(i@) - 380 pF cm*; piezoelectric stress constant of the piezofii)(- 216 x 10~ (V m™)
(N m®)™; electromechanical coupling factiy) - 0.44; damping factors ¢; = 007, ¢, = 003 and {5 = 001.

This table presents the size of the actuamor sensor placement, but this geometry was compuatéde next
subsection, for the best size a location in a discmesh.
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6.1. Decision of size and location of two piezoetdc actuator and sensor
The optimization problem is formulated as

min J(x,,1,, K¢ )= -W,
st 0<xy <l . (30)
0<x, +ly <l

In the constraints of the problem (30) it t@nnote that the size and location of actuatorsfsrcan not exceed the
size of the structure.

The results of the simulation in Maple arewglio Fig. 3. The best location and size were chdeem a discrete set
of positions [0.25,0.3,0.35,0.4,0.45,0.5,0.55,@@%]. Each value of this set represents the distdmetween the
beginning of the first actuators/sensors to theirrégg of the second and the first two was congddixed on the
beginning of the structure. Also a set of sizes elassen as [0.01,0.025,0.05, 0.1,0.15,0.2], whack galue represents
the size of the actuators/sensors, considering biads equal. The initial conditions arg =[0,0,0,0.10.01,0.01.

Heaviside functions were used for compute the diffeproperties of each piece on the structures.

-0.0014
-0.0024
-0.0034

-0.004 4

-0.005-

5

position 2 B
Figure 3: Cost function of dissipated energy bydyrgtem since the control action and the actuatmation and size.

In the Fig. 3, the numbers from 1 to 6 and ® tworresponded to the vectors of size and posigspectively. For
more clarity, the number 6 from the size axis cgponds to 0.2 of the vector of size.

It can be observed from the Fig. 3 that th&t pesition, for the control effectiveness, is neebpth actuators on the
beginning of the structure, or ox=0. The best size is the largest. Now, these resaltsbe used for simulating the
control of the induced vibrations.

6.2 Vibrations control aspects

For the induced vibration control were usesl¢fuations of feedback gain (27) and the integraif state Eq. (24).
The tree modes of vibration, without conterk shows in Fig 4.

%10 mode 1 %10 mode 2 w10 mode 3

&1 [m]

&2 [m]
&3 [m]

0 02 04 06 08 1 "0 02 04 06 08 1 "0 o2 04 0B 08 1
tls] tls] ts]

Figure 4: Response of the system without control.
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The frequencies computed aifHz, 66Hz, 144Hz, respectively. The piezoelectric material size muation change
the frequencies, because this, it was chosen stddmation and position from section 6.1.

The control gain can have large variationscihaffects significantly the control effectivene$svo examples that
show the control system and the effect of the cbmfain K. are presented. In Fig. 5, the mat@xwhich is dependent
onK., is computed aQ=diag(0,0,0,500, 500,500) and in Fig. 6 wittQ=diag(0,0,0,5000, 5000,5000) .

o1 [m]

&1 [m]

w10

-4

mode 1

-4

¥ 10

rode 2

rnode 3

w107

4

3

2

82 [m]
o

0.5 1 0
ts]

05
t[s]

Figure 5: Response of the system with control.
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o

& m]
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0.5

0.1

D‘Q
t [=]

0.3 0.4 0.5

u] o 0.z

Figure 6: Response of the system with control.

With this result is possible observe that mowatrol gain can help on the effectiveness ofuibeation control. It
can be see that on Fig. 6 the modal displacemeppstl before than on Fig. 5.
An important aspect, that was not considenethis work, is the fact that the strain of thezpielectric actuator is
limited, but the chosen feedback gains do not prilede these limitations.
These simulations show competitive resultéiwther published approaches (Xu and Koko, 2004,eSal. 2004).
The feedback gai¥(t) from the control system show in Fig. 6, for thstfivibration mode, is shown in Fig. 7.

4

2

]

W [Wolts]

0z

D.‘xi
t[s]

06 na

Figure 7: Closed-loop control voltage responseHerfirst mode of the beam in vibration.

It is possible to observe in Fig. 7 that thecéoapplied of the actuator produces a moment itraposition of the
beam deflection.
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7. CONCLUSIONS AND CONSIDERATIONS

In this work we introduced a technique for optintiga of location and size of piezoelectric matedatl vibration
control of flexible beam. This technique uses tp&mal control strategies for choosing the besatmn and size for
some given discretization. Piezoelectric actuatamgl sensors are added to the system to controfréagiency
vibrations considering that the properties of theicture changes where the actuators and senseradaled. This
technique can be used to build light structure witntrolled vibration levels, as manipulators widxible links, while
preserving the stiffness and precision. It alsaiced the energy consumption and suits the need®fospace systems
or for tasks that demand lightness, precision a&ilitya

For geometric complex beams, the eigenveeaisapproximated using polynomial interpolationrspag all finite
elements at the beam. The Rayleigh quotient wasl tee the validity of the technique. Hermite polynials
interpolation proved to be the best approximatmrtis case.

The simulations for the control system conéidreffectiveness for this control technique. Thenercal results
indicate that the location and size of the actis#$ensors may have significant influence on thegiatted system
control performance. Also the feedback gain affeatsctly the control efficiency.
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