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Abstract. In the present work, the Liou and Steffen Jr. and the Radespiel and Kroll schemes are implemented, on a 
finite volume context and using an upwind and unstructured spatial discretization, to solve the Euler equations in the 
two-dimensional space. Both schemes are flux vector splitting ones. These schemes are implemented in their second 
order accuracy versions employing the reconstruction linear method of Barth and Jespersen and their results are 
compared with their first order accuracy versions and with theoretical results. Five nonlinear flux limiters are studied: 
Barth and Jespersen (minmod like), Van Leer, Van Albada, Superbee and -limiter. The time integration uses a Runge-
Kutta method of five stages and is second order accurate. Both algorithms are accelerated to the steady state solution 
using a spatially variable time step procedure. This technique has proved excellent gains in terms of convergence ratio 
as reported in Maciel. The algorithms are applied to the solution of the steady state physical problem of the supersonic 
flow along a compression corner. In this paper, the first of this series (THEORY), the theories involving the numerical 
implementation of the two schemes to first order accuracy and later the extension to second order accuracy are 
developed, whereas in the second paper of this series (RESULTS), the numerical solutions obtained with both schemes, 
in their first and second order accuracies, are presented and analyzed. The results have shown that the Radespiel and 
Kroll scheme using Barth and Jespersen, Van Leer, Van Albada and Superbee nonlinear limiters presents the most 
accurate values to the shock angle of the oblique shock wave generated at the compression corner. 
 
Keywords: Liou and Steffen Jr. algorithm, Radespiel and Kroll algorithm, Unstructured algorithms, Linear 
reconstruction, Euler equations. 

 
1. INTRODUCTION 
 
 Conventional non-upwind algorithms have been used extensively to solve a wide variety of problems (Kutler, 1975, 
and Steger, 1978). Conventional algorithms are somewhat unreliable in the sense that for every different problem (and 
sometimes, every different case in the same class of problems) artificial dissipation terms must be specially tuned and 
judicially chosen for convergence. Also, complex problems with shocks and steep compression and expansion gradients 
may defy solution altogether. 
 Upwind schemes are in general more robust but are also more involved in their derivation and application. Some 
upwind schemes that have been applied to the Euler equations are reported below. 
 Liou and Steffen Jr. (1993) proposed a new flux vector splitting scheme. They declared that their scheme was simple 
and its accuracy was equivalent and, in some cases, better than the Roe (1981) scheme accuracy in the solutions of the 
Euler and the Navier-Stokes equations. The scheme was robust and converged solutions were obtained so fast as the 
Roe (1981) scheme. The authors proposed the approximated definition of an advection Mach number at the cell face, 
using its neighbor cell values via associated characteristic velocities. This interface Mach number was so used to 
determine the upwind extrapolation of the convective quantities. 
 Radespiel and Kroll (1995) emphasized that the Liou and Steffen Jr. (1993) scheme had its merits of low 
computational complexity and low numerical diffusion as compared to other methods. They also mentioned that the 
original method had several deficiencies. The method yielded local pressure oscillations in the shock wave proximities, 
adverse mesh and flow alignment problems. In the Radespiel and Kroll (1995) work, a hybrid flux vector splitting 
scheme, which alternated between the Liou and Steffen Jr. (1993) scheme and the Van Leer (1982) scheme, in the 
shock wave regions, is proposed, assuring that resolution of strength shocks was clear and sharply defined. 
 Algorithms for solving the Euler equations using a perfect gas model on structured grids in two- and three-
dimensions have become widespread in recent years (Turkel and Van Leer, 1984, and Riggins, Walters and Pelletier, 
1988). However, these algorithms have shown difficulties in predicting satisfactory results around complex geometries 
due to mesh irregularities. As a result, attention has turned to the development of solution algorithms on arbitrary 
unstructured grids. Impressive results have been obtained for a wide range of problems (Mavriplis and Jameson, 1987, 
and Barth and Jespersen, 1989). 
 One problem associated with unstructured meshes is the increased difficulty in obtaining smooth higher order spatial 
approximations to state data at cell interfaces. Two methods have been used to obtain higher order accuracy on 
unstructured meshes. A method used by several researchers for cell vertex schemes (Stoufflet et al., 1987, and 
Whitaker, 1988) was applied to obtain higher order accuracy in a procedure analogous to MUSCL differencing on a 
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structured mesh. A conventional structured mesh limiter can be employed in this scheme to obtain approximately 
monotone results near flow discontinuities. The second method, which was proposed by Barth and Jespersen (1989), 
linearly reconstructs the cell averaged data and imposes a monotone preserving limiter to achieve smooth results near 
flow discontinuities. 
 On an unstructured algorithm context, Maciel (2007a,b) have presented a work involving the numerical 
implementation of four typical algorithms of the Computational Fluid Dynamics community. The Roe (1981), the 
Steger and Warming (1981), the Van Leer (1982) and the Harten (1983) algorithms were implemented and applied to 
the solution of aeronautical and of aerospace problems, in two-dimensions. The Euler equations in conservative form, 
employing a finite volume formulation and an unstructured spatial discretization, were solved. The Roe (1981) and the 
Harten (1983) schemes were flux difference splitting ones and more accurate solutions were expected. On the other 
hand, the Steger and Warming (1981) and the Van Leer (1982) schemes were flux vector splitting ones and more 
robustness properties were expected. The time integration was performed by a Runge-Kutta method of five stages. All 
four schemes were first order accurate in space and second order accurate in time. The steady state physical problems of 
the transonic flow along a convergent-divergent nozzle and of the supersonic flows along a ramp and around a blunt 
body were studied. The results have shown that the Roe (1981) scheme has presented the most severe pressure fields in 
the ramp and blunt body problems and the most accurate value of the stagnation pressure in the blunt body case. On the 
other hand, the Van Leer (1982) scheme has yielded the most accurate value of the shock angle in the ramp problem, 
while the Harten (1983) scheme has yielded the best value of the lift coefficient in the blunt body problem. 
 Following the studies of 2007, Maciel (2008a,b) have presented a work involving the numerical implementation of 
more three typical algorithms of the Computational Fluid Dynamics community. The Frink, Parikh and Pirzadeh 
(1991), the Liou and Steffen Jr. (1993), and the Radespiel and Kroll (1995) algorithms were implemented and applied to 
the solution of aeronautical and aerospace problems, in two-dimensions. The Euler equations in conservative form, 
employing a finite volume formulation and an unstructured spatial discretization, were solved. The Frink, Parikh and 
Pirzadeh (1991) scheme was a flux difference splitting one and more accurate solutions were expected. On the other 
hand, the Liou and Steffen Jr. (1993) and the Radespiel and Kroll (1995) schemes were flux vector splitting ones and 
more robustness properties were expected. The time integration was performed by a Runge-Kutta method of five stages. 
All three schemes were first order accurate in space and second order accurate in time. The steady state physical 
problems of the transonic flow along a convergent-divergent nozzle, of the supersonic flows along a ramp and around a 
blunt body, and of the “cold gas” hypersonic flow around a double ellipse were studied. The results have shown that the 
Frink, Parikh and Pirzadeh (1991) scheme presents the most severe pressure fields and the most accurate values of the 
stagnation pressure in the blunt body and in the double ellipse problems. On the other hand, the Liou and Steffen Jr. 
(1993) scheme yields the best wall pressure distribution, in comparison with the experimental results, in the nozzle 
problem, while the Radespiel and Kroll (1995) scheme yields the most accurate value of the shock angle in the ramp 
problem. 
 In the present work, the Liou and Steffen Jr. (1993) and the Radespiel and Kroll (1995) schemes are implemented, 
on a finite volume context and using an upwind and unstructured spatial discretization, to solve the Euler equations in 
the two-dimensional space. Both schemes are flux vector splitting ones. These schemes are implemented in their second 
order accuracy versions employing the reconstruction linear method of Barth and Jespersen (1989) and their results are 
compared with their first order accuracy versions and with theoretical results. Five nonlinear flux limiters are studied: 
Barth and Jespersen (minmod like), Van Leer, Van Albada, Superbee and -limiter. The time integration uses a Runge-
Kutta method of five stages and is second order accurate. Both algorithms are accelerated to the steady state solution 
using a spatially variable time step. This technique has proved excellent gains in terms of convergence ratio as reported 
in Maciel (2005 and 2008c). The algorithms are applied to the solution of the steady state physical problem of the 
supersonic flow along a compression corner. 
 In this paper, the first of this series (THEORY), the theories involving the numerical implementation of the two 
schemes to first order accuracy and later the extension to second order accuracy are developed, whereas in the second 
paper of this series (RESULTS), the numerical solutions obtained with both schemes, in their first and second order 
accuracies, are presented and analyzed. The results have shown that the Radespiel and Kroll (1995) scheme using Barth 
and Jespersen, Van Leer, Van Albada and Superbee nonlinear limiters presents the most accurate values to the shock 
angle of the oblique shock wave generated at the compression corner. 
 An unstructured discretization of the calculation domain is usually recommended to complex configurations, due to 
the easily and efficiency that such domains can be discretized (Mavriplis, 1990, and Pirzadeh, 1991). However, the 
unstructured mesh generation question will not be studied in this work. 
 
2. EULER EQUATIONS 
 
 The fluid movement is described by the Euler equations, which express the conservation of mass, of linear 
momentum and of energy to an inviscid mean, heat non-conductor and compressible, in the absence of external forces. 
In integral and conservative forms, these equations can be represented by: 
 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

      0  S
yexe

V
dSnFnEQdVt ,                                                                                                                    (1) 

 
with Q written to a Cartesian system, V is the cell volume, nx and ny are the components of the normal unity vector to 
the flux face, S is the flux area, and Ee and Fe are the convective flux vector components. The Q, Ee and Fe vectors are 
represented by: 
 

    and   ,                                                                                                 (2) 
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being  the fluid density; u and v the Cartesian components of the velocity vector in the x and y directions, respectively; 
e the fluid total energy; and p the fluid static pressure. 
 In the studied problem, the Euler equations were nondimensionalized in relation to the freestream density, , and in 
relation to the freestream speed of sound, a. Hence, the density is nondimensionalized in relation to ; the u and v 
velocity components are nondimensionalized in relation to a; and the pressure and the total energy are 
nondimensionalized in relation to the product (a)2. The matrix system of the Euler equations is closed with the state 
equation 
 

  )(5.0)1( 22 vuep  ,                                                                                                                                       (3) 

 
assuming the ideal gas hypothesis.  is the ratio of specific heats, equal to 1.4 to air. The total enthalpy is determined by 
 
    peH .                                                                                                                                                             (4) 

 
3. LIOU AND STEFFEN JR. (1993) ALGORITHM 
 
 The approximation of the integral equation (1) to a triangular finite volume yields a system of ordinary differential 
equations with respect to time: 
 
 iii CdtdQV  ,                                                                                (5) 

 
with Ci representing the net flux (residual) of conservation of mass, of linear momentum and of energy in the Vi volume.  
The residual is calculated according to: 
 
 ,                                                                                                                                                         (6) 321 FFFCi 
 
where Fl is the discrete convective flux at the interface “l”. 
 As shown in Liou and Steffen Jr. (1993), the discrete convective flux calculated by the AUSM scheme (“Advection 
Upstream Splitting Method”) can be interpreted as a sum involving the arithmetical average between the right (R) and 
the left (L) states of the “l” cell face, multiplied by the interface Mach number, and a scalar dissipative term. The 
subscript “L” is associated to properties of a given “i” cell and the subscript “R” is associated to properties of the “ne” 
neighbor cell of “i”. Hence, to the “l” interface: 
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where  defines the normal area vector to the “l” surface. The area components at this interface are 

defined by: 
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The normal unity vector components, and , and the flux area of the “l” interface, Sl, are defined as: l
xn l

yn
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Expressions to xl and yl are given in Tab. 1. Figure 1 illustrates the “i” volume and its respective neighbors, its nodes 
and its flux interfaces. 
 

Table 1. Values of xl and yl. 
 

Interface xl yl 

l = 1 
12 nn xx   12 nn yy   

l = 2 
23 nn xx   23 nn yy   

l = 3 
31 nn xx   31 nn yy   

 

 
Figure 1. Schematic of a cell and its neighbors, nodes and flux interfaces. 

 

The “a” quantity represents the speed of sound, defined as  pa . Ml defines the advection Mach number at the 

“l” face of the “i” cell, which is calculated according to Liou and Steffen Jr. (1993) as: 
 

 ,                                                                 (10)   RLl MMM

 
where the separated Mach numbers M+/- are defined by the Van Leer (1982) formulas: 
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L and MR represent the Mach number associated with the left and right states, respectively. The advection Mach M
number is defined by: 
 

   aSvSuSM yx  .                                       (12) 

The pressure at the “l” face of the “i” cell is calculated by a similar way: 

                                                                                          (13) 
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with p+/- denoting the pressure separation defined according to the Van Leer (1982) formulas: 
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The definition of the dissipative term  determines the particular formulation of the convective fluxes. According to  

Radespiel and Kroll (1995), the choice below corresponds to the Liou and Steffen Jr. (1993) scheme: 
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The equations above clearly show that to a supersonic Mach number at the cell face, the Liou and Steffen Jr. (1993) 
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scheme represents a purely upwind discretization, using either the left state or the right state to the convective and 
pressure terms, depending of the Mach number signal. 
 The time integration is performed by a Runge-Kutt
b represented in general form by: 
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ith k = 1,...,5; 1 = 1/4, 2 = 1/6, 3 = 3/8, 4 = 1/2 and 5 = 1; and C = F1+F2+F3. The cell volume on an unstructured w

context is defined by: 
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ith n1, n2 and n3 being the nodes of a given triangular cell, defined in Fig. 1. This version of the Liou and Steffen Jr. 

4. R PIEL AND KROLL (1995) ALGORITHM 

The Radespiel and Kroll (1995) scheme is described by Eqs. (5) to (14). The next step is the determination of the  
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d sipative term. A hybrid scheme is proposed by Radespiel and Kroll (1995), which combines the Van Leer (1982) 
scheme and the Liou and Steffen Jr. (1993) (AUSM) scheme. Hence, 
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scheme. The time integration follows the method described by Eq. (16). T is scheme is first order accurate in space. 
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5. CELL CENTERED HIGHER ORDER CORRECTION 

A piecewise linear redistribution of the cell averaged flow variables to obtain higher order accuracy while insuring 
at

 
 
th  new extrema are not created in the reconstruction process is given by Barth and Jespersen (1989) as 
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here r is the vector from the cell center (x0,y0) to any point (x,y) in the cell, and Q represents the solution gradient in 
 
w
the cell. Note that this equation is simply the first order accurate Taylor approximation plus a higher order correction. 
With this approximation, the solution gradient Q is constant in each cell and can be computed from 
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here V is the volume contained in the path of integration. For the cell centered case, the path chosen passes through w

the centroids “a”, “b” and “c” of the three surrounding cells “ne1”, “ne2” and “ne3” of the given cell “i”, respectively, 
as shown in Fig. 2. The vector Q represents the best estimate of the solution gradient in the cell computed from 
surrounding centroid data. 

 
Figure 2. Integration path for the gradient calculation of cell centered case. 

 
Consider a limited version of the linear function about the centroid of cell i 
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meshes in multi-dimensions. For linear reconstructions, extrema in Q(x,y)i occur at the vertices of the face and sufficient 
conditions for Eq. (22) can be easily obtained. The value i can now be calculated for each vertex j of cell i as 
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,,min iiii w , where “j” is the index of each vertex defining cell “i”. New limited values for Q  at each 
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of the faces en calculated from Eq. (22) using the value of i calculated for the cell. Following this 
procedure guarantees that the linearly reconstructed state variables satisfy the monotonicity principle when evaluated 
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anywhere within a face. The nonlinear limiter described by Eq. (24) is of a minmod type. Other limiters are presented 
below and were studied in this work. The definitions of these limiters are presented in Hirsch (1990). 
 
 Van Leer nonlinear limiter: 
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 Van Albada nonlinear limiter: 
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 Superbee nonlinear limiter: 

 


 

    2,min,1,2min,0max ss
ji  ;                                                                                                                             (27) 

 -limiter: 
 

 

     ,min,1,min,0max ss
ji ,                                                                                                                             (28) 

here “s” is the ratio of differences of the components of the vector of conserved variables, defined according to Eq. 

. SPATIALLY VARIABLE TIME STEP 

The basic idea of this procedure consists in keeping constant the CFL number in all calculation domain, allowing, 

        

 
w
(24), and  assumes values from 1.0 to 2.0, being 1.5 the value adopted in this work. 
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hence, the use of appropriated time steps to each specific mesh region during the convergence process. Hence, 
according to the definition of the CFL number, it is possible to write: 
 

  iii csCFLt   ,                                                                                                                                                (29) 

here: CFL is the “Courant-Friedrichs-Lewy” number to provide numerical stability to the scheme; 

 is a characteristic length of information transport. On a finite volume context,  is chosen as the minor 

 fou the m

. INITIAL AND BOUNDARY CONDITIONS 

.1. Initial condition 

To the compression corner problem, values of freestream flow are adopted for all properties as initial condition, in 

 

 
w

  
5.022  is the maximum characteristic velocity of information propagation in the calculation domain; 

 
value nd between the minor centroid distance, involving the “i” cell and a neighbor, and inor cell side length. 
 

ii avuc 


and  is is
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the whole calculation domain (Jameson and Mavriplis, 1986, Maciel, 2002, and Maciel, 2008a). Therefore, the vector of 
conserved variables is defined as: 
 

T

i MMMQ











 
25.0

)1(

1
sincos1 ,                                                                                               (30) 

 
eing M the freestream flow Mach number and  the flow attack angle. 

.2. Boundary conditions 

The boundary conditions are basically of three types: solid wall, entrance and exit. These conditions are 

b
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implemented in special cells named ghost cells. 
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(a) Wall condition: This condition imposes the flow tangency at the solid wall. This condition is satisfied considering 
the wall tangent velocity component of the ghost volume as equals to the respective velocity component of its real 
neighbor cell. At the same way, the wall normal velocity component of the ghost cell is equaled in value, but with 
opposite signal, to the respective velocity component of the real neighbor cell. 
 The pressure gradient normal to the wall is assumed to be equal to zero, following an inviscid formulation. The 
same hypothesis is applied to the temperature gradient normal to the wall, which corresponds to an adiabatic condition. 
The ghost volume density and pressure are extrapolated from the respective values of the real neighbor volume (zero 
order extrapolation), with these two conditions. The total energy is obtained by the state equation of a perfect gas. 
(b) Entrance condition: 
(b.1) Subsonic flow: Three properties are specified and one is extrapolated, based on analysis of information 
propagation along characteristic directions in the calculation domain (Maciel, 2002). In other words, three characteristic 
directions of information propagation point inward the computational domain and should be specified, to the subsonic 
flow. Only the characteristic direction associated to the “(qn-a)” velocity cannot be specified and should be determined 
by interior information of the calculation domain. The pressure was the extrapolated variable from the real neighbor 
volume, to the studied problem. Density and velocity components had their values determined by the freestream flow 
properties. The total energy per unity fluid volume is determined by the state equation of a perfect gas. 
(b.2) Supersonic flow: All variables are fixed with freestream flow values, at the boundary entrance. 
(c) Exit condition: 
(c.1) Subsonic flow: Three characteristic directions of information propagation point outward the computational domain 
and should be extrapolated from interior information. The characteristic direction associated to the “(qn-a)” velocity 
should be specified because it penetrates the calculation domain (Maciel, 2002). In this case, the ghost volume’s 
pressure is specified by its initial value. Density and velocity components are extrapolated and the total energy is 
obtained by the state equation of a perfect gas. 
(c.2) Supersonic flow: All variables are extrapolated from the interior domain due to the fact that all four characteristic 
directions of information propagation of the Euler equations point outward the calculation domain and, with it, nothing 
can be fixed. 
 
8. CONCLUSIONS 
 
 In the present work, the Liou and Steffen Jr. (1993) and the Radespiel and Kroll (1995) schemes are implemented, 
on a finite volume context and using an upwind and unstructured spatial discretization, to solve the Euler equations in 
the two-dimensional space. Both schemes are flux vector splitting ones. These schemes are implemented in their second 
order accuracy versions employing the reconstruction linear method of Barth and Jespersen (1989) and their results are 
compared with their first order accuracy versions and with theoretical results. Five nonlinear flux limiters are studied: 
Barth and Jespersen (minmod like), Van Leer, Van Albada, Superbee and -limiter. The time integration uses a Runge-
Kutta method of five stages and is second order accurate. Both algorithms are accelerated to the steady state solution 
using a spatially variable time step. This technique has proved excellent gains in terms of convergence ratio as reported 
in Maciel (2005 and 2008c). The algorithms are applied to the solution of the steady state physical problem of the 
supersonic flow along a compression corner. 
 In this paper, the first of this series (THEORY), the theories involving the numerical implementation of the two 
schemes to first order accuracy and later the extension to second order accuracy are developed, whereas in the second 
paper of this series (RESULTS), the numerical solutions obtained with both schemes, in their first and second order 
accuracies, are presented and analyzed. The results have shown that the Radespiel and Kroll (1995) scheme using Barth 
and Jespersen, Van Leer, Van Albada and Superbee nonlinear limiters presents the most accurate values to the shock 
angle of the oblique shock wave generated at the compression corner. 
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