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Abstract. In this work an h-adaptive modified element-free Galerkin (MEFG) method is investigated. The proposed 
error estimator is based on a recovery by equilibrium of nodal patches where a recovered stress field is obtained by a 
moving least square approximation. The procedure generates a smooth recovered stress field that is not only more 
accurate then the approximate solution but also free of spurious oscillations, normally seen in EFG methods at regions 
with high gradient stresses or discontinuities. 
     The MEFG method combines conventional EFG with extended partition of unity finite element (EPUFE) methods in 
order to create global shape functions that allow a direct imposition of the essential boundary conditions. 
     The re-meshing of the integration mesh is based on the homogeneous error distribution criterion and upon a given 
prescribed admissible error. Some examples are presented, considering a plane stress assumption, which shows the 
performance of the proposed methodology. 
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1. Introduction 
 

Important contributions on error estimation for mesh-free/meshless methods have already been presented in the last 
years. In Duarte and Oden (1996) a residual-based error estimator is presented and applied in the context of the h-p 
clouds method. Other different contributions were proposed by Chung and Belytschko (1998), Gavete et al. (2001), 
Gavete et al. (2002), Gavete et al. (2003) and Rossi and Alves (2004), which considered a recovery based error 
estimator applied to the EFG method. Another contribution, presented by Liu and Tu (2002), considers a refinement of 
the background integration mesh based in the error that takes place when different integration strategies are performed. 
In Rossi and Alves (2004) a recovery based error estimator is proposed together with an h-adaptive strategy, where the 
recovered stress field is determined by considering the minimization of a potential that takes into account a least square 
error minimization of the stress difference, a distributed residual error and a prescribed traction residual error. The 
proposed error estimation was applied within the frame work of the Modified Element-Free Galerkin (MEFG) method, 
see Alves and Rossi (2003), that allows a direct imposition of the essential boundary conditions, as done in FEM. The 
MEFG method may be seen as a conventional element-free Galerkin (EFG) method, see Belytschko et al. (1994), that 
considers two different weight functions, which automatically selects at each particle the proper type of weight function 
and determines the adequate size of its support. As a result, the global shape functions, defining the approximation 
space, are derived for a given intrinsic base by the use of the Moving Least Square Approximation (MLSA), see 
Lancaster and Salkauskas (1981).  

In this work, an h-adaptive modified element-free Galerkin (MEFG) method is investigated. The proposed error 
estimator is based on a recovery by equilibrium of nodal patches where a recovered stress field is obtained by a moving 
least square approximation. The procedure generates a smooth recovered stress field that is not only more accurate then 
the approximate solution but also free of spurious oscillations, normally seen in EFG methods at regions with high 
gradient stresses or discontinuities. 

Results are presented, considering a plane stress assumption in the small stress-strain elasticity context, in order to 
investigate the efficiency of the proposed error estimator and of the h-adaptive procedure. 
 
2. Modified element-free Galerkin method 
 
• Moving least square approximation: By the use of a MLSA it is possible to construct an approximation function 
uh(X) that fits a discrete set of data {uI, I=1…n} such that: 
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where {pj(X), j=1…m} represents the set of intrinsic base functions and w(X - XI) is a weight function centered at XI. 
Here, ΦI(X) is the global shape function, defined at particle XI, and A(X) is the moment matrix. 

• Element-free Galerkin: The conventional EFG method is characterized by the construction of a set of global shape 
functions, ΦI(X) defined at particle XI, which defines the approximation space, used by the Galerkin method to solve a 
boundary value problem. The particle distribution that defines how the covering of the domain is performed, by the 
global shape functions ΦI(X), is not arbitrary since it must satisfy the stability condition 
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i.e., the number of particles XJ whose associated shape function ΦJ(X) have a nonzero value at X, must be larger that the 
size of A(X), which is given by the number of intrinsic base functions in p(X). Moreover, for X∈Rn, there must be n+1 
particles, whose position vectors form a nonzero n-th rank simplex element. In order to obtain a particle distribution that 
comply with Eq.(4), we perform a partition of the domain, Ω, into a triangular integration mesh, where we consider 
each triangular partition/element to be an integration cell and each vertex node to be the position of a particle. One of 
the most common weight function is the quartic-spline function,  wEFG , given as: 
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where I Ir r r=  with I Ir = −X X . The radius Ir , defining the support of wEFG(X - XI), is determined by 
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where JI represents the set of adjacent nodes associated with xI. 

Now, in the conventional EFG method, the global shape functions {ΦI(X), I=1…n}, defining the approximation 
space, do not satisfy, in general, the kronecker delta property, i.e., ΦI(XJ) ≠ δIJ. As a consequence, it is not possible to 
enforce the essential boundary conditions, by directly prescribing nodal values, as done in the FEM. However, special 
weight functions may be constructed in order to satisfy the kronecker delta property. Among the possible weight 
functions is the extended partition of unity finite element (EPUFE) weight function. 
 

• Extended Partition of unity finite element weight functions: The global shape functions {ΦI(X), I=1…n}, 
employed in EPUFE, are obtained by a MLSA. In the case where a linear triangular finite element base function is used 
as a weight function for the MLSA, one derives: 
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Here, *

iX  and *
1i+X  are the elements of the adjacent extended node list set of XI, obtained in a counter clockwise 

sense of the triangular integration cell whose area is A. The usage of an intrinsic base pT(X) = [1,x,y] together with a 
EPUFE weight function satisfy the requirement in Eq.(4), therefore, this extension ensures the regularity of A(X). 

The extended points are determined as: ( )i i i Iε∗ = + −X X X X . Notice that, letting ε→0, we derive a global shape 

function that satisfy, in a limiting sense, at a given particle XJ, the kronecker delta property, i.e., ( )
0

lim I J IJε
δ

→
Φ =X . 

• Modified element-free Galerkin method: The objective of the MEFG method is to combine, in a suitable way, both 
weight functions, in order to explore the smoothness of wEFG and the kronecker delta property of wEPF. The strategy can 
be shown by considering a body with domain Ω and boundary ∂Ω, where ∂Ω = Γu ∪ Γt and Γu ∩ Γt = ∅. Here, Γu and 
Γt are respectively the part of ∂Ω with prescribed essential and natural boundary conditions. Notice that the EPUFE 
weight functions are specified at particles that belong to a neighborhood of Γu and the EFG weight functions are 
specified at the remaining particles of the mesh. This procedure enables the determination of an approximate solution 
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that satisfies accurately the essential boundary condition and is smooth in the entire domain, except for a neighborhood 
of Γu. The MEFG method can be seen as a conventional EFG method, having a set of different weight functions, which 
is able to automatically select, at each particle, the proper type of weight function and to compute the adequate size of 
its support, as shown in Figure 1. 
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Fig. 1 An example of body coverage by the MEFG 
 
3. Formulation of the problem and error analysis  
 
• Classical elastostatics: Let 2RΩ ⊂  be a bounded domain with a Lipschitz boundary ∂Ω , subjected to: a prescribed 
body force b  defined on Ω , a prescribed surface traction t  defined on Γt and a prescribed displacement u u=  
defined on Γu. The classical boundary value problem associated with elastostatics is stated as: Find u so that 
 

     , , , ,t udiv andb x n t x u u x0+ = ∀ ∈Ω = ∀ ∈Γ = ∀ ∈Γσ σ  (8) 

 
Here, n is the outer normal to the surface at Γt and σ is the Cauchy stress tensor, with = Dσ ε . 

Now, let H={u ⎢ui ∈ H1(Ω), u= u  at Γu} denote the set of admissible displacements and H0={u ⎢ui ∈ H1(Ω), u=0 at 
Γu} the set of admissible variations. The weak formulation of Eq.(8) may be stated as: Find u ∈ H so that 
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• Error estimator: Different error estimators have been proposed in the literature where most of the work has been 
applied in the framework of the FE methods. A relevant review on error estimators applied to FE methods is presented 
in Ainsworth and Oden (1997) and Zienkiewicz et al. (1999), where we see that most of the error estimators belong to 
one of the following two categories: The residual based error estimators and The recovery based error estimators. 

However, much of the theory on error estimators employed in FE methods may be extended to all Galerkin methods. 
As a result, one may adapt these proposed methodologies to the particular case of EFG methods. 

Recently, some important contributions on error estimation for meshless and/or EFG methods have been proposed. 
Chung and Belytschko (1998) presented a recovery based error estimator that uses the difference between the values of 
the projected/recovered stress σ* and the approximate MEFG solution σh. The recovered stress was obtained by 
considering a MLSA of the nodal stress values {σh(xI), I=1,…,n}, but employing a different domain of influence. In 
their work, the effectivity index was optimized by varying the domain of influence in the MLSA of the recovered stress. 
Belytschko et al. (1998) presented a residual-based error estimator that considered a multi-resolution analysis. Another 
important contribution, presented in Duarte and Oden (1996), is a residue based error estimator that was applied in their 
proposed h-p clouds method. In their work, due to the high regularity of the global shape functions, no jumps in the 
approximate stress field were present, what simplified considerably the implementation of the method. Gavete et al. 
(2002) presented a recovery based error estimator where the recovered solution was obtained by a MLSA using a 
Taylor series expansion around each particle, together with the four quadrant criteria to choose the neighborhood points. 
Gavete et al. (2003) presents an error approximation in EFG method using different moving least squares 
approximations. 

The objective of this work is to propose a recovery-based error estimation that is able to: produce a recovered stress 
σ*, which is a more refined estimate of the exact stress solution σ than σh; and be easily extended to arbitrary nonlinear 
inelastic problems. Notice that, unlike FE methods, there is no assurance of the existence of super convergent points, 
where the approximate stresses σh have a higher order of accuracy. Therefore, in order to assure that the recovered 
stress σ* is more accurate than σh, some additional criterion must be enforced. 

The strategy of the proposed method is to combine the equilibrium by nodal patch criterion, proposed by 
Zienkiewicz et al. (1999), responsible for determining the patch recovered nodal stress values σREP(xI), for each nodal 



patch xI, with the optimal domain of influence criterion, proposed by Chung and Belytschko (1998), employed in the 
determination of the recovered stress, obtained by a MLSA of the nodal stress values {σREP(xI), I=1,…,n}, where the 
optimal domain of influence is obtained with the optimum value of an effectivity index. In addition to the above criteria, 
in order to filter out possible spurious oscillations, that may appear in EFG methods, an adequate low order polynomial 
interpolation procedure was also implemented in the equilibrium by nodal patch procedure. 

In this work, the approximation of the error is computed in terms of a convenient energy norm, which depends on 
the difference between the recovered solution σ* and the MEFG solution σh. Moreover, the selection of a recovery-
based method was based on the fact that these methods have shown to be extremely accurate, robust and that in most 
cases they appear to give a superior accuracy of estimation than that obtained by the residual based methods see 
Zienkiewicz et al. (1999). Here, we consider the stress error measure, in the energy norm, to be given by 
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where σ is the exact stress vector, σh the approximate solution vector and D the second order tensor of the elastic 
constitutive equation. Moreover, Once σ* is determined, from a suitable post-processing of the MEFG stress field σh, 
the approximate error estimator is determined as: 
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In order to evaluate the quality of the approximate error estimator and to compute the optimal domain of influence, 

employed in the determination of σ*, we introduce the effectivity index, which is defined as 
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Moreover, replacing σ  by σ* in Eq.(12), one may define η*. 
• Recovery procedures: In the finite element method the most effective, among the recovery methods, are: the super 
convergent patch recovery (SPR) and the recovery by equilibrium of patches (REP), see Zienkiewicz et al. (1999). 

The SPR procedure is based on the assumption of the existence of points in the domain for which super-convergence 
occurs. In the FEM, the existence of such points can be shown in most of the cases. However, in mesh-free methods 
there is no assurance of the existence of such points. One way to circumvent the absence of super-convergent points in 
mesh-free methods is to apply the REP procedure. In the REP approach we derive, in each patch, a smooth patch 
recovered stress field σREP that satisfies in the least square sense the same patch equilibrium condition as the numerical 
MEFG solution, i.e., that  
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Now, as proposed by Zienkiewicz et al. (1999), in order to avoid singularity problems in the determination of the 

patch recovered solution σREP in Ωp, the patch equilibrium condition is modified, by enforcing the equilibrium condition 
to each component of σREP, which in the case of a plane stress condition is given by σREP=[ REP

xxσ , REP
yyσ , REP

xyσ ]T. In this 
case the modified patch equilibrium condition is: 
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where ε  is the vector containing the components of the infinitesimal strain tensor, ( )h h

i i iσ σ e e= ⋅ , ( )REP REP
i i iσ σ e e= ⋅ , 

and Ωp is the patch domain. 
• Definition of patches: In general the patch can be designed in two different ways: 
1. Patch of elements surrounding a vertex node, i.e., a node patch; 
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2. Patch defined as a union of elements surrounding an element, i.e., an element patch. 
Here, it is considered only node patches. Moreover, since the partition of the domain is done with the use of 

triangular integration cells, a typical node/particle patch is of the type illustrated in Figure 2. 
 

Ix

 

Figure 2: Node/particle patch defined at xI. 
 

• Node patch recovered stress approximation: Before describing the procedure employed for the determination of the 
recovered stress field σ*, it is important to notice that, in regions covered by EPUFE global shape functions, the 
resulting MEFG stress solution σh have some edge discontinuities. Now, in regions covered only by the EFG global 
shape functions, the resulting stress σh is smooth. However, this smooth stress field may present some spurious 
oscillations at regions with high gradient stresses or discontinuities, Chung and Belytschko (1998). 

In order to circumvent the discontinuities or spurious oscillations in the node patches, σh is approximate in each 
patch by a polynomial function of a suitable order. Thus, the resulting patch recovered stress σREP will not only be 
smooth but also free of spurious oscillations in each node patch. 
The proposed procedure for the determination of the improved stress field σ* can be described as follows: 
(i) Approximate the patch recovered stress REP

iσ  in each nodal patch by a polynomial of a suitable order, i.e., 
( )REP REPREP

i i i i iσσ σ e e e= ⋅ = , where REP
i iq aσ = ⋅ , qT=[1, x, y, x2, xy, y2,…] and ai denotes the vector of unknown 

coefficients. In this case, the discrete form of the modified node patch equilibrium condition may be expressed as: 
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where B is the matrix relating the strain ε vector with the particle nodal values. 
Now, in order to compute the coefficients ai a criterion is enforced which consists in the least square minimization of: 
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As a result, by defining 
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The strategy employed for the determination of the patch recovered stress is to approximate σREP by a quadratic 
polynomial in all node patches associated with an EFG weight function. At the node patches associated with an EPUFE 
weight functions it is employed a trial linear polynomial. If the matrix resulting from the linear system, given in Eq.(17)
, is singular, σREP is then approximated by a constant polynomial. This is due to the fact that in some particular cases a 
patch with a constant stress field σh may occur. Moreover, the quadratic approximation of σREP in the EFG node patches 
is possible since β >1, what may prevent singularity problems when solving for ai. 
(ii) Once the patch recovered stress field is determined at, for example, the k-th node patch, the nodal stress value 
σREP(xk) is evaluated. 
(iii) Finally, after the patch recovered nodal stresses σREP(xk) are obtained, for every particle xk, a recovered smooth 
stress field σ* is computed by a MLSA using an appropriate domain of influence, defined by the selection of an optimal 
value for β  in Eq.(7), denoted here by β r, which is determined based on the effectivity index and on the relative error 
analysis. Notice that, in the construction of σ*, only conventional quartic-spline EFG weight functions are used. Thus, 
from Eq.(1), we have: ( ) ( ) ( ){ }*

1

n REP
k kk

σ x x σ x
=

= Φ∑ . Here kΦ  are the shape functions constructed with a domain 
of influence β r. 



• Adaptive refining procedure: The h-adaptive procedure aims at achieving a prescribed a priory percentage error γ in 

terms of the global energy norm of the system, i.e., 
100E Eσσ
γ

≤e  where Eσ  is the global energy norm associated 

with the exact solution. The most commonly used optimality criteria, for the error distribution in the mesh, considers 
that a mesh is optimal, for a given prescribed error, if the error distribution is uniform throughout the entire domain, 
Bugeda (1991). Thus, according to this criterion, the required error for each element, i.e., integration cell, is considered 

to be 
100e
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=e  where ne is the number of elements in the integration mesh. Now, considering the 

approximation of σ by σ* and that 2 2 2h
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The h-adaptive procedure consists in the solution of a sequence of h-adaptive refinement steps that will converge 

once the approximate convergence criterion is achieved, which is given by * *

100E Eσσ
γ

≤e . 

At each h-adaptive refinement step a new mesh is generated and the problem is solved. If the convergence criterion 
is not satisfied, all the elements that violate criterion are refined. Moreover, the necessary transition elements, required 
for the mesh compatibility, are introduced. This procedure is necessary for a proper construction of the EPUFE weight 
functions. With the objective of improving the mesh quality, after the refinement step, a Laplacian smoothing is 
performed. 
 
3. Examples  
 

In order to investigate the performance of the proposed h-adaptive method we solve a simple problem. The Young’s 
Modulus E=210GPa and the Poisson’s ratio ν=0.3. Also, it is considered, in all examples, a Gauss-Legendre rule with 7 
integration points and ε=10-4. 
• Plate with hole: An infinite plate with a center hole, shown in Figure 3(a), is simulated, by imposing, over a finite 
plate, the proper symmetry conditions and the exact prescribed traction obtained from the analytical solution, 
Timoshenko and Goodier (1970). 
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Figure 3: a) Infinite plate with hole model; b) Particle distribution - β a=1.5. 

 
In order to determine the proper values for β a and β r it is considered an initial mesh, illustrated in Figure 3(a). Table 1 
shows the variation of the effectivity index. Table 2 shows the variation of the approximate relative error with respect to 
β a and β r. The last column in table 2 shows the variation of the relative error, with respect to the exact solution as a 
function of β a. 

 
/a rβ β  1,01 1,05 1,10 1,25 1,50 2,0 2,50 3,0 3,50 4,0 

1,25 1,7150 1,7137 1,7121 1,7119 1,7407 1,8411 1,9134 1,9954 2,1000 2,2452 
1,5 1,0423 1,0416 1,0412 1,0425 1,0526 1,1108 1,2110 1,3552 1,5466 1,7858 

1,75 1,0711 1,0704 1,0695 1,0673 1,0683 1,1003 1,1662 1,2707 1,4175 1,6082 
2,0 1,0516 1,0510 1,0503 1,0475 1,0450 1,0598 1,1063 1,1927 1,3220 1,4942 

2,25 1,0500 1,0497 1,0493 1,0479 1,0476 1,0655 1,1093 1,1863 1,3008 1,4543 
2,5 1,0546 1,0543 1,0539 1,0525 1,0526 1,0695 1,1056 1,1672 1,2591 1,3843 

2,75 1,1092 1,1084 1,1071 1,1040 1,1027 1,1181 1,1464 1,1924 1,2621 1,3595 
3,0 1,1003 1,0992 1,0974 1,0920 1,0871 1,0971 1,1215 1,1611 1,2203 1,3026 

3,25 0,9995 0,9987 0,9976 0,9952 0,9957 1,0124 1,0424 1,0856 1,1453 1,2252 
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3,5 0,9851 0,9841 0,9829 0,9810 0,9839 1,0043 1,0357 1,0786 1,1366 1,2131 
4,0 1,0722 1,0708 1,0692 1,0669 1,0703 1,0845 1,1046 1,1336 1,1740 1,2282 

 
Table 1: Variation of θ with respect to β a and β r. 

 
/a rβ β  1,01 1,05 1,10 1,25 1,50 2,0 2,50 3,0 3,50 4,0 η (%) 

1,25 3,8064 3,8034 3,7999 3,7996 3,8651 4,0925 4,2592 4,4493 4,6926 5,0298 2,2207 
1,5 2,2179 2,2165 2,2157 2,2186 2,2402 2,3650 2,5801 2,8906 3,3040 3,8229 2,1299 

1,75 2,6390 2,6372 2,6351 2,6296 2,6322 2,7118 2,8760 3,1370 3,5047 3,9838 2,4672 
2,0 2,8260 2,8246 2,8225 2,8153 2,8092 2,8506 2,9782 3,2149 3,5692 4,0425 2,6882 

2,25 3,0747 3,0738 3,0726 3,0688 3,0688 3,1230 3,2539 3,4839 3,8261 4,2865 2,9251 
2,5 3,4883 3,4875 3,4861 3,4819 3,4831 3,5414 3,6640 3,8726 4,1842 4,6098 3,3027 

2,75 4,0925 4,0894 4,0850 4,0742 4,0708 4,1304 4,2388 4,4145 4,6804 5,0519 3,6818 
3,0 4,5239 4,5191 4,5120 4,4905 4,4718 4,5163 4,6208 4,7897 5,0421 5,3927 4,0996 

3,25 4,3667 4,3633 4,3588 4,3486 4,3521 4,4273 4,5626 4,7571 5,0263 5,3875 4,3575 
3,5 4,4132 4,4090 4,4038 4,3958 4,4098 4,5037 4,6484 4,8467 5,1154 5,4710 4,4685 
4,0 5,3797 5,3726 5,3647 5,3532 5,3702 5,4425 5,5455 5,6955 5,9055 6,1890 5,0159 

 
Table 2: Variation of η* (%) with respect to β a and β r. 

 
To illustrate the h-adaptive procedure in this case we considered the initial mesh, illustrated in Figure 4(a), and used 

β a = 1.5 and β r = 1.1. The choice of these suitable/optimal values was based in the analysis of tables 1 and 2 in the 
same way as done for the cantilever bean problem, already discussed. 

The final refined mesh, for γ ≤ 1.5%, is illustrated in Figure 4(c). Figures 4(b) and 4(d) show the particle 
distribution for the initial mesh and final mesh respectively. 
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Figure 4: Initial and final integration meshes for γ ≤ 1,5% and theirs particle distributions. 

 

A Convergence analysis in energy norm is presented in Figure 5. For comparison, it is also illustrated in Figure 5 the 
convergence achieved using a Tri3 finite element with the same integration meshes obtained with h-refinement 
procedure. 
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Figure 5: Error convergence analysis. 
 
4. Conclusions 

 
In this paper is proposed an error estimator and an h-adaptive strategy applied to a modified element-free Galerkin. 

The proposed procedure for the determination of the recovered stress field σ* has shown to generate an accurate 
approximation of σ, as illustrated in Figures 10(b), 12 and 14(b). The procedure is simple to implement and leads to a 
proper refinement of the integration mesh, as shown in the problem cases. Moreover, we can see that all the regions in 
the vicinity of Γu have been properly refined, reducing the stress error of the final approximate solution. Also, as seen in 
the derived results, the most effective domain of influence used in the MLSA of the recovered stress σ* is the one where 
the weight function tends to have the smallest domain of influence, i.e., r should be slightly larger than 1.0, which leads 
to a fast computation of the shape functions in the post processing phase. Here, we have derived an approximate optimal 
value of β r=1.1. In Figure 16 we can also see that the proposed method has shown to be more efficient, in terms of the 
required degrees of freedom to achieve the prescribed global error, than the one presented in Rossi and Alves (2004). 

From the results obtained in this work, it is possible to conclude that the proposed h-adaptive MEFG method is a 
promising approach. More importantly, the proposed method may be extend, with some minor changes, to nonlinear 
inelastic problems, and should be investigated further. 
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