THERMODYNAMICS STUDY OF SIMPLIFIED SBF SOLUTIONS

Ivan Napoelão Bastos¹
Gustavo Mendes Platt²
Instituto Politécnico, Universidade do Estado do Rio de Janeiro, Caixa Postal 97282, CEP 28601-970, Nova Friburgo RJ
¹inbastos@iprj.uerj.br, ²gmplatt@iprj.uerj.br

Glória Dulce de Almeida Soares³
PEMM/COPPE, Universidade Federal do Rio de Janeiro, Caixa Postal 68505, CEP 21941-972, Rio de Janeiro, RJ
³gloria@metalmat.ufrj.br

Abstract. This work is an attempt to study under thermodynamics approach some similar body fluids (SBF) with a simplified number of reagents in order to allow the homogeneous precipitation of hydroxyapatite. The Debye-Hückel’s model of activity coefficient was used as well as chemical equilibrium and mass balance equations to model the multi-electrolyte system at 298K. Initially were considered ten reagents that are usually employed as raw material to produce SBF. Subsequently some reagents were selectively eliminated, that is their concentrations are equalized to zero. Then, equilibrium calculations were performed with a computational program based on multi-variable Newton-Raphson method, where the concentration and activity of each chemical specimen present in solution is considered. Besides, some modified chemical formulations were simulated in respect to free Gibbs energy change, Ca/P ratio and supersaturation.

Keywords: similar body solutions, computational modeling, thermodynamics, biomaterials

1. Introduction

The artificial materials considered for implants are tested by in vivo and in vitro methods. The tests are focused on physical, chemical and mechanical properties that provide data for implanting into human organism to be assessed. Since the work of Branemark et al. (1969), the study of how implants interact with tissue is subject of great interest in biomedical and materials science fields. According to Kokubo et al. (2000), an essential requirement for in vivo bone growth on a synthetic material is the formation of a calcium phosphate layer on the materials surface, usually called bone-like apatite. This bone-like apatite seems to act signaling proteins and cells to start the cascade of events that result in bone formation. In other words, the in vivo behavior can be predicted by using in vitro tests such as immersion of synthetic materials into simulated body fluid (SBF) solution (Andrade et al., 1999).

The possibility of formulate different simulated body fluids have originated many published papers (Andrade et al., 2002; Habibovic et al., 2004). Few works in the literature consider the thermodynamics of solution applied to similar body fluids (Lin and Lee, 2003; Dorozhkina et al., 2003; Glinkina et al., 2004). Helebrant et al. (2002) investigated the effects of chloride and carbonate ions on precipitation, and their conclusion is that the initial supersaturation plays important role in apatite layer creation. They evaluate the relative supersaturation of different types of phosphates. A way to estimate the supersaturation index S_R uses the following formula, (Marques, 2003),

$$\sigma = \frac{\sqrt{IAP}}{K} - 1$$

where IAP stands for ion activity product and K is the solubility product and n is the number of ions in precipitation formula. As bigger than one, more probable is the occurrence of precipitation. Negative values, on the other hand, imply that a precipitation will not take place.

The use of solutions to coat metals with calcium phosphate is important in biomedical and dental fields due to the possibility to improve the interaction implant/tissue. In this sense several solutions have been suggested to produce this type of coating (Andrade et al., 2000). One of them was even accepted as ISO standard (2005) draft. However, the solutions are complex from the point of view of preparation, and taken almost ten reagents to be prepared. We believe that, for in vitro coating, some of reagents are not necessary. Therefore, in this work some theoretical investigation is performed to confirm the possibility of homogeneous precipitation within a thermodynamics approach. The phosphates studied here were hydroxyapatite (HA), brushite (B) and octacalcium phosphate (OCP).

2. The thermodynamics modeling

In this work, the activity coefficients for the charged particles are calculated by Eq. (1)
\[\log(\gamma_i) = -\frac{z_i^2 AI_i^{1/2}}{1 + Bal_i^{1/2}} \] \hspace{1cm} (1) \\

where \(a \) is the ionic radius, \(z_i \) is the charge of ion \(i \) and \(A \) is the dielectric constant of water at 298.15 K.

\[A = \frac{1}{3} \left(2\pi L d_w \right)^{1/2} \left(\frac{e^2}{4\pi\varepsilon_0\varepsilon kT} \right)^{3/2} \] \hspace{1cm} (2)

In Eq. (2), \(L \) is the Avogadro number, \(e \) is the unit charge, \(\varepsilon_0 \) is the permittivity in vacuum, \(k \) is the Boltzmann constant, \(d_w \) is the density of water at 298.15 K (in kg/m\(^3\)) and \(\varepsilon_i \) is the dielectric constant of water at 298.15 K.

In Eq. (1), we used \(Ba = 1.5 \), following the recommendation of Glinkina et al. (2003), allowing us to describe activity coefficients up to 0.2 M concentrations. Finally, \(I \) is the ionic strength of the solution, calculated by:

\[I = \frac{1}{2} \sum_i z_i^2 C_i \] \hspace{1cm} (3)

Thus, if all ionic concentrations in the solution are known, one can easily evaluate activities for all chemical species. However, the determination of concentrations (and, therefore, activity coefficients) is a nonlinear algebraic problem, characterized by material balances equations and chemical equilibrium equations.

We consider the following chemical equilibria in solution:

1. Water dissociation
 \[H^+ + OH^- \rightleftharpoons K_w H_2O \] \hspace{1cm} (4)

2. Sequential dissociation of phosphoric acid
 \[H^+ + PO_4^{3-} \rightleftharpoons K_{i1} HPO_4^{2-} \] \hspace{1cm} (5)
 \[H^+ + HPO_4^{2-} \rightleftharpoons K_{i2} H_2PO_4^- \] \hspace{1cm} (6)
 \[H^+ + H_2PO_4^- \rightleftharpoons K_{i3} H_3PO_4 \] \hspace{1cm} (7)

3. Equilibrium with calcium phosphates
 \[Ca^{2+} + HPO_4^{2-} \rightleftharpoons K_{i4} CaHPO_4 \] \hspace{1cm} (8)
 \[Ca^{2+} + H_2PO_4^- \rightleftharpoons K_{i5} CaH_2PO_4^- \] \hspace{1cm} (9)
 \[Ca^{2+} + OH^- \rightleftharpoons K_{i6} CaOH^+ \] \hspace{1cm} (10)

4. Carbonate/Bicarbonate Equilibrium
 \[HCO_3^- \rightleftharpoons K_{i7} H^+ + CO_3^{2-} \] \hspace{1cm} (11)

Besides the chemical equilibrium relationships, we also include the following material balances

1. Material Balance for Phosphorous
 \[[P] = [PO_4^{3-}] + [HPO_4^{2-}] + [H_2PO_4^-] + [H_3PO_4] \] \hspace{1cm} (12)

2. Material Balance for Carbon
 \[[C] = [CO_3^{2-}] + [HCO_3^-] \] \hspace{1cm} (13)

3. Material Balance for Calcium
 \[[Ca] = [CaHPO_4] + [CaH_2PO_4^-] + [CaOH^+] \] \hspace{1cm} (14)

Analysis of the Degrees of Freedom

The system of equations which is solved in order to obtain all concentrations and activity coefficients for the chemical species in solution has eleven equations (Eqs (4)-(14)), and we need to know the concentrations for twelve species: \([PO_4^{3-}]\), \([HPO_4^{2-}]\), \([H_2PO_4^-]\), \([H_3PO_4]\), \([CO_3^{2-}]\), \([HCO_3^-]\), \([CaHPO_4]\), \([CaH_2PO_4^-]\), \([CaOH^+]\), \([H^+]\), \([OH^-]\), \([Ca^{2+}]\). Thus, the system apparently has one degree of freedom; but this degree of freedom is satisfied by a pH specification and inclusion of the definition of pH in the nonlinear algebraic system.
One can observe that the concentrations and activity coefficients for inert ions (i.e., chemical species not participating of chemical reactions), are not considered here; however, the activities for these species are easily calculated by Eq. (1) (see results section).

To estimate the supersaturation index S_r, we use the previous equations, and here it is written for HA. The product of solubility are: $HA - 2.34 \times 10^{-59}$, $OCP - 2 \times 10^{-49}$ and $B - 2.32 \times 10^{-7}$ (McDowell et al., 1977; Moreno et al., 1974). For example, for HA, this index is calculated using:

$$S_{r-HA} = \sqrt{\frac{\gamma_{Ca} \gamma_{OH^-} \gamma_{OH}^2}{2.34 \times 10^{-59}}} - 1 \quad (15)$$

2.1 Numerical solution of the problem

The nonlinear system formed by Eqs. (4)-(14) and the definition of pH is solved by a Newton procedure (Ortega and Rheinboldt, 1970), i.e., the Jacobian matrix is numerically evaluated by forward finite-differences. The following figure illustrates the algorithm used.

An initial solution is necessary ($\theta^{(0)}$), and the tolerance for stopping the algorithm (ε). The Jacobian matrix $J = \nabla F$ is calculated numerically by finite-differences. The vector of functions F represents the system of equations to be solved in the form: $F(\theta) = 0$, where θ is the vector of variables. The algorithm is stopped when the norm of the differences of two consecutive approximations for θ is less than the specified tolerance (in our simulation we specified $\varepsilon = 1 \times 10^{-7}$). Then, the algorithm was converged and the concentrations of all chemical species were determined. Finally, the activity coefficients as well as other parameters can be calculated by a simple substitution in Eq. (1).

![Newton algorithm](image)

3. Results and discussion

Two solutions were considered for this work. One is the classic described in ISO Draft (2005) and the other is a modified one. The Table 1 gives the ionic concentrations of both solutions.
Table 1– Ionic concentrations of solutions employed in thermodynamics analysis, 10^{-3} molar.

<table>
<thead>
<tr>
<th>ion</th>
<th>Standard</th>
<th>Modified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na$^+$</td>
<td>142.0</td>
<td>4.2</td>
</tr>
<tr>
<td>K$^+$</td>
<td>5.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Ca$^{2+}$</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Cl$^-$</td>
<td>147.8</td>
<td>5.0</td>
</tr>
<tr>
<td>HCO$_3^-$</td>
<td>4.2</td>
<td>4.2</td>
</tr>
<tr>
<td>HPO$_4^{2-}$</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

To obtain the standard SBF solution the necessary chemical reagents are NaCl, NaHCO$_3$, KCl, K$_2$HPO$_4$.3H$_2$O, MgCl$_2$, HCl, CaCl$_2$ and Na$_2$CO$_3$. We proposed an alternative set of reagents using only three reagents that are NaHCO$_3$, K$_2$HPO$_4$.3H$_2$O and CaCl$_2$. This new formulation is named hereafter as modified SBF.

Figure 2 shows the Gibbs free energy change for the precipitation reaction of hydroxyapatite, brushite and octacalcium phosphate formed in standard SBF. All of them are dependent of pH, but the energy change of brushite is a positive value in this pH range. Therefore, it is impossible to precipitate in this condition. In principle, the phases with negative values are prone to occur spontaneously, and the more stable phase is that with more negative values. Thus, hydroxyapatite is the phosphate more stable; moreover, above pH 7 HA splits from octacalcium in a steady manner. The values of ΔG were calculated using the classical equation for supersaturated solutions (see Lu and Leng, 2005).

The same objects are plotted in Fig. 3 for the modified SBF proposed in this work. Some scatterings observed at low pH region were consequences of numerical instabilities, but not enough to alter the average values of ΔG.

Figure 2 – Gibbs free energy change for the precipitation reactions of hydroxyapatite (HA), octacalcium phosphate (OCP) and brushite (B). Standard SBF.

Figure 3 – Gibbs free energy change for the precipitation reactions of hydroxyapatite (HA), octacalcium phosphate (OCP) and brushite (B). Modified SBF.
Figures 4 and 5 present the supersaturation index (S_r) for the standard and modified SBFs, respectively. The brushite curve (plotted in red line) has negative values of S_r, which indicates the difficulties of precipitation. The other curves (HA and OCP) have positive values for S_r, and they present a strongly nonlinear behavior with pH variation. One can observe that at pH = 7.0 the OCP shows a maximum value for S_r. In this pH, the S_r for OCP is higher than that of HA. Above pH 8.0, the S_r of HA increases and the S_r of OCP decreases. Therefore, for high pH values, precipitation of HA is more favorable than OCP. Besides, the S_r for HA and OCP in the modified SBF presents a maximum value superior than that of standard SBF. Probably this is a consequence of the ionic strength of the medium, since chemical species (Na^+, K^+ and Cl^-) are inert ions in this chemical system, but modifies the ionic strength.

![Figure 4 – Supersaturation index for standard SBF.](image)

Finally, Figs. 6 and 7 show the ratios of total Ca/P (concentrations and activities) for standard and modified SBF. The concentration ratios maintain constant (2.5), for both solutions in the pH range from 4 to 13 (as a consequence of the conservation of chemical species in the electrolyte). On the other hand, the prediction of precipitation reactions is conducted by an analysis using activities instead of concentrations (Walas, 1985). There is a plateau in the range 7-11 for the standard and modified SBFs. This plateau occurs at a ratio $[Ca]/[P]$ equals to 4 in the standard SBF and approximately 3 for the modified SBF. This $[Ca]/[P]$ ratio affects the dissolution of phosphates and is an important aspect of apatites (Mavropoulos et al., 2003).
4. Conclusion

In this work was studied the homogenous precipitation of calcium phosphate with biomedical interest at 25 °C. Two solutions were considered in this paper: a standardized SBF and a modified one that has only the ions necessary to allow the precipitation. The thermodynamics approach takes into account the non-ideality of these solutions that were modeled by Debye-Hückel activity coefficient. Besides, the Gibbs free energy change for the precipitation reaction of three phosphates was calculated in pH range from 4 to 13. The brushite energy change is positive; consequently its precipitation is impossible (as also observed by Lu et al., 2005). The other two, HA and OCP, have negative values and they are able to precipitated. The supersaturation index of standard and modified solutions of HA and OCP are bigger than one and for OCP reaches a maximum near pH 7. Moreover, for the modified solution both the Gibbs free energy changes as well as supersaturation are more favorable than that of standard SBF, probably due to less electric charge interactions of electrolytes.

5. Acknowledgements

Financial support was received from CAPES, FAPERJ and CNPq Brazilian agencies.

6. References

Moreno et al., 1974, Nature, 247, 64.

7. Responsibility notice

The authors are the only responsible for the printed material included in this paper.