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Abstract. Astarita (1979) proposed a local and objective criterion to classify flows. His criterion is not restricted to MWCSH, ans 
is essentially an attempt to quantify the stress-relieving rotation experienced by the flowing material. Huilgol (1980) analyzed 
Astarita´s work and showed, through examples, some inconsistencies which rendered it useless as a general flow criterion. The 
present work revisits Huilgol´s examples and discusses in detaile the underlying physics that make Astarita´s criterion to fail for 
certain flows. This analysis leads to a new criterion for flow classification involving the concept of persistence of straining. A key 
kinematic entity introduced in the proposed criterion is the π-plane, a plane that is normal to the relative-rate-of-rotation vector. 
For a more comprehensive criterion, other parameters are needed in addition to a persistence-of-straining parameter. One of 
them is a measure of the deformation rate in the π-plane. Emphasis is given to isochoric motions. The proposed kinematic 
criterion is local, frame-indifferent and is not restricted to particular classes of flows. Its robustness is shown through detailed 
analyses of some examples of  flows in the literature. 
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1. Introduction  

 
Non-Newtonian fluids are typically characterized by rheological functions which are determined through 

measurements during shear and (less often) extensional flows. However, the information in such measurements is  
rather incomplete if the mechanical behavior of a given material is to be thoroughly determined.  Some materials exhibit 
elasticity and hence the stress at a material particle is a function of the history of deformation that it has experienced. 
Other materials are not isotropic, or are suspensions of rigid elongated particles. The stress in these materials is not 
expected to be a function of the deformation rate only. Therefore, a thorough characterization of a non-Newtonian 
material would require the measurement of rheological functions in different types of flow. 

Many of the classical experiments that have been used to illustrate differences between Newtonian and Non-
Newtonian behaviors, e.g., rod climbing, die swell, the tubeless siphon and the contraction flows--cannot be  
strictly classified under one single, well-defined type of flow. Actually, many of these are complex flows often referred 
to as ``predominantly viscometric,'' or ``predominantly extensional,'' or ``approximately rigid body motion.'' Moreover,  
typical engineering flows are also complex, i.e., the material often experiences a variety of types of flow as it moves 
along the process line.  

Therefore, some important questions should be addressed. As just mentioned, there are some flows that are, say, 
“predominantly extensional”. However, for the sake of rigorousness, it would be quite useful to somehow quantify 
“how extensional” such flows are. For complex flows in general, it is also of practical importance from the rheological 
point of view to map as accurately as possible the regions of shear, extension, rigid body motion, etc.  

The issue of flow classification is directly related to a key concept for the present paper, namely, the persistence-of-
straining concept (Lumley (1969), Astarita (1979), Schunk and Scriven (1990), which is now briefly introduced. To this 
end, for simplicity let us employ the particular case of plane flows.  We start by considering the eigenvalues and 
principal directions of the rate-of-strain tensor for these flows. In the absence of relative rotation, a material filament 
which is aligned, say, with the eigenvector corresponding to the largest positive eigenvalue, will be persistently 
stretched. On the other hand, it may happen that the fluid rotates in such a way that a different material filament is 
aligned with this eigenvector at each instant of time. In this case, a filament which is aligned with this eigenvector at 
some instant of time will subsequently rotate towards directions of less stretching. Thus, this material rotation relative to 
the eigendirections decreases the persistence of straining. It is worth noting that, when the two non-null eigenvalues are 
equal, then relative rotation will not affect the persistence of straining on the plane defined by the corresponding 
eigenvectors. Moreover, in general, the intensity of persistence of straining is a function of the difference between the 
non-null eigenvalues. 

In this connection, two opposite extreme situations are of interest. One of them is the extensional flow (maximum 
persistence of straining). The other is the rigid body motion, i.e. a motion with no deformation, which is  
approached in a flow with finite rate of strain when the relative rate of rotation is high enough. 

Astarita (1979) proposed that there are three properties that a representative criterion for flow classification should 
combine. It should be:  
 

1. Local - it should indicate the flow type at each position in the flow. 
2. Objective - it should be invariant under changes of reference frame. 
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3. Generally applicable - it should not be restricted to certain classes of flows. 
  

Astarita (1979) also pointed out that a criterion can be either purely kinematic or can consider the response of the 
material to the flow (in addition to the kinematics). The three properties above are equally applicable to both types. In 
the present paper, we shall propose a purely kinematic criterion.  

Huilgol (1980) analyzed Astarita's criterion and gave three examples which illustrate weaknesses of RD as a flow 
classifier. The given examples show that: a) the parameter RD does not hold a one-to-one correspondence with different 
flow types; b) when two eigenvalues of D have the same value, but are different from the third, there is no a priori 
reason to back up Astarita's choice for the relative-rate-of-rotation tensor and c) the limiting value for RD when two of 
the eigenvalues approach each other can be different from the value directly calculated for two exactly equal 
eigenvalues.  

The new criteria constructed does not present the short-comings of RD. This will be clear by an application of the 
present criteria on examples similar to the ones given by Huilgol. 

 
2. A new criterion for flow classification 
 
An analysis of the classifier developed by Astarita (1979) and the criticism made by Huilgol (1980) have lead to 
conclusions of central importance in the construction of a new criterion for classification of flows. These inferences are 
now rephrased in a generalized form: 
  
Illation 1:  rotation cannot affect the strain which occurs orthogonally to the plane of relative rotation. 
Illation 2: the change in the intensity of persistence of straining experienced by a material filament as it rotates  
relative to the eigenvectors of D is a decreasing function of the difference between the largest and smallest  
deformation rates that occur in the plane of relative rate of rotation. 
 

Therefore, the first entity we need to define is a scalar quantity, In, which is the intensity of the rate of strain of an 
arbitrary material filament whose orientation at a given instant of time is denoted by the unit vector en It is given by: 

  
nn eDe ⋅⋅=nI  

 
where D is the rate-of –strain tensor. The material derivative of In is: 
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In this equation, D&  is the material derivative of the rate-of-strain tensor. Let 1λ , 2λ  and 3λ be the eigenvalues of D such 
that 21 λλ ≥ , 31 λλ ≥ and 32 λλ ≥ ; and let e1, e2 and e3 be the corresponding unit eigenvectors. Thus, D&  is given 
by: 

ΩDDΩDD \ ⋅−⋅+=& ,  i

i

ii eeD\ ∑
=

=

3

1

λ&   

 
where Ω is the tensor associated with the rotation of the eigenvectors of D through ii eΩe ⋅=& . Because each material 
filament has a different rate of rotation, we adopt the vorticity as the angular velocity of en, because it is a representative 
average rate of rotation of the material filaments composing the material element. Then we can write that neWe ⋅=n&  
and the material derivative of In is rewritten as: 
  

n
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where W  is the relative-rate-of-rotation tensor defined through ΩWW −= . We can break In into two parts, one of 

them, n
\

n e De ⋅⋅ , gives the rate of change of In due to changes with time of the eigenvalues of D following the 

material particle. The other part, *
nI& , defined by: 

 

nn e DWWDe ⋅−⋅= )(*
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gives the rate of change of In due to the relative rate of rotation. Therefore, *

nI&  is the part of nI&  that is related to the  
concept of persistence of straining. 

It is now useful to define the relative-rate-of-rotation vector, 



 
 

εWωww ⋅−=−=  
 

where ε is the third-rank alternator tensor. When w  is not null, this vector allows us to define the so-called π-plane, a 
plane which is normal to w . The importance of this plane for the persistence-of-straining concept cannot be 
overemphasized, as it will become clear in the following discussion. The π-plane is a useful tool to circumvent the 
difficulties pointed out by Lumley (1969) regarding the many possible orientations of the vorticity relative to the 
eigenvectors of D of an arbitrary velocity field. A different possible path to circumvent these difficulties had already 
been discussed by Schunk and Scriven (1990), who proposed a decomposition of the relative rate of rotation. 

Because of Illation 1, in the quest for a suitable measure of persistence of straining, it is appropriate to restrict our 
attention to directions en on the π-plane only. There are other three directions ex, ey and ez, which are now defined, that 
play an important role on the persistence-of-strain parameter. Direction ez is defined by w , namely, wwez = , where 

ww ⋅=w . Directions ex and ey on the π-plane are defined as the directions of maximum and minimum values of In 
on that plane, respectively. The projection of tensor D on the π-plane is given by: 
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It can be shown that ex and ey are the eigenvectors of Dπ and xΛ and yΛ are the corresponding eigenvalues. 

Generally, *
nI&  is a function of the angle between the considered filament and, say, direction ex.  

 
2.1 The persistence-of-straining parameter 
 

An average of *
nI& , called here *

nI& , is calculated, between the directions of minimum and maximum values of In, in 

order to have a representative value of *
nI&  at a material particle. It can be shown that, we can write, for that average the 

following expression: 
 

( )wI yxn Λ−Λ=*&  
 

It is worth noting that *
nI&  is always non-negative. 

 

It is convenient to make the quantity *
nI& dimensionless with the aid of appropriate local quantities of the flow. To 

this end, we choose to compare the difference between the eigenvalues of Dπ with a measure of its intensity, namely, 
2
πDtr , while the relative rate of rotation, w , is compared with a measure of the intensity of the total rate of 

deformation, namely, 2Dtr . The result is the parameter ℜ , a new measure of persistence of straining: 
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which is also always non-negative, and increases monotonically as the intensity of persistence of straining is decreased. 
It is worth noting that, in the construction of the persistence-of-straining parameter, ℜ , we did not consider the 
contribution of \D  to the rate of change of In. This is justified because for transient flows in which the flow type is 
fixed, it is clear that the eigenvalues of D do change in time. Therefore, as far as flow classification and the concept of 
persistence of straining are concerned, the only part of the material derivative of In that matters is 

nn e DWWDe ⋅−⋅ )( . However, the complete material derivative of In can play a significant role in the 
understanding of general flows, and a detailed analysis of it is in course.  

ℜ  is a measure of the intensity of persistence of straining. The two opposite extreme situations mentioned earlier 
are the boundaries of this parameter. For extensional flows, which corresponds to maximum intensity of  
persistence of straining, 0=ℜ . The other extreme, namely, the vicinity of rigid body motion, corresponds the limit of 
zero intensity of persistence of straining. In this case, ∞→ℜ .  

This parameter is also a measure of the weakness of the flow --in the sense of Tanner and Huilgol (1975) 
classification-- or, equivalently, the inverse of ℜ  is a measure of how strong the flow is. For non-null relative rates of 
rotation, we can combine the above equation with Eq.\ (\ref{eq:newst-re}), and ℜ  becomes: 
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2.2. Other usefull parameters 
 

In the previous section we proposed a persistence-of-straining parameter that considers the straining which occurs 
in the π-plane only, consistently with Illation 2. In order to construct a more complete criterion for flow classification, it 
is also important to somehow distinguish flows with different intensities of the strain rate that occurs off the π-plane. 
We now introduce two parameters that can give important information about the rate of deformation on the direction of 
the rate of deformation w  and on the π-plane. 

The first one, G, compares the intensity of the strain rate occurring in the w -direction with the intensity of the total 
strain rate. It is given by: 
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This parameter is sensitive to the sign of the deformation rate in the w -direction. 

The second parameter, H, compares the intensity of the strain rate occurring on the π-plane with the intensity of the 
total strain rate is given by: 
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It is clear that H can take only non-negative values. It is interesting to notice that, when H=1, then D=Dπ and therefore 
the flow is (locally) a plane flow.  

It is important to emphasize that G and H are not defined when w = 0. 
 

3. Performance of the new criteria on some examples  
 

3.1 Example 1 
 

The flow considered in this example is: 
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For this flow, the rate-of-strain tensor D and the vorticity tensor W are simply: 
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Since the eigenvectors of D lie along the axes, they do not rotate and so WW = . The expression for Astarita's 
classifier is: 
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 It is clear from the expression above that for this flow RD can take any value in [ )∞,0 .  Huilgol (1980) points out 

that, in particular, we can choose ( )2
3

2
2

2
1

2 21 aaaw ++= , which makes RD=1, but the corresponding flow is 
not viscometric. In the present criterion, de necessary and sufficient conditions for the flow to be viscometric are 1=ℜ  
and H=1. Since we are dealing with incompressible materials, another condition is tr D = 0. 
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It can be proven that these conditions yield to a viscometric flow. 
 
3.2 Example 2 

  
This example was adapted from Huilgol (1980) such as to illustrate the other two shortcomings of RD mentioned 

earlier. Let us consider the isochoric flow given by the following velocity field: 
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where ε is a real parameter. For ε=0, Huilgol's (1980) second example is recovered. For this flow, the rate-of-strain 
tensor D and the vorticity tensor W are simply: 
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Since the eigenvectors of D lie along the axes, they do not rotate and so WW = . The expression for Astarita's 
classifier is: 
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It is clear that RD is not continuous in the vicinity of ε=0, as the flow approaches an extensional flow, as it is shown 

in the following result:  
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4. Final Remarks 
 
A new criterion for classification of flows is proposed. It is local, objective, and is not restricted to any class of flows. 
This criterion is based on a new persistence-of-straining parameter, ℜ , but it is shown that for a more complete 
classification other parameters are needed.  

The parameter ℜ  and the persistence-of-straining parameter proposed by Astarita (1979), namely, RD are 
equivalent for isochoric plane flows. Huilgol (1980) identified inconsistencies in Astarita's parameters when applied to 
other flows. 

 The criterion proposed here does not present such inconsistencies, as we elaborate next. 
 

1. For the classical flow types, it yields the following one-to-one correspondences: 
 
       Viscometric Flow ( )1,1 ==ℜ⇔ H   
       Extensional Flows ( )0=ℜ⇔   
       Nearly rigid body motion ( )∞→ℜ⇔  
 
2. It is not necessary to change the definition of the tensor Ω when two eigenvalues of D are equal, since the 

tensor that arises in the criterion is not Ω by itself, but DΩΩD ⋅−⋅ , which is uniquely determined in 
this case. 

 
3. ℜ does not present discontinuities,  which are observed in RD exactly because the former requires no 

special treatment  when two eigenvalues of D are equal. 
 

The criterion for flow classification presented in this paper has arisen from a detailed examination of the physics 
involved in the process of persistence of straining, and its successful application to different types of flows has 
demonstrated its robustness. 
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