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Abstract. At the present work, natural convection of liquid metal inside a closed cavity is examined, based on the
Boussinesq approximation. The upper and lower cavity walls are adiabatic, while the vertical walls are at uniform and
different temperatures. The problem was numerically solved by the finite volume method, based on the power-law-
interpolating scheme. The pressure-velocity coupling was solved with the algorithm SIMPLEC. The solution was
validated comparing by with some experimental and numerical results available in the literature. The software was
implemented using Fortran77 with message passing on twenty PIII processors Linux cluster. The results show that the
introduction of parallelism does not affect the code precision and provides a significant reduction in the processing
time.
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1. Introduction

Natural convection study in closed cavities is of a great concern due, in part, to the knowledge of the importance of
this process in some industrial applications, as plate solar collectors, nuclear reactors design, purification of metals,
crystal growth, metal solidification and melting, among others. Extensive review on natural convection in cavities had
been made by Ostrach (1972) and Catton et. al (1983). Experiments using liquid metals had been led by Viskanta et. al
(1986), Wolff et. al (1988) and Wang et. al (1999). Numerical results had been presented by Mohammad and Viskanta
(1991), Rocha and Nieckele (1997), Arcidiacono et. al (2001), and many others.

There are many published works about natural convection in closed cavities, but, in their majority, the
computational meshes are relatively coarse. The mesh refinement implies in the use of high performance computing in
order to avoid a long time simulation. The necessary performance can be reached by three basic types of high
performance computer architectures, Hwang (1998):

1. Vector architecture computer. The machines have parallel resources witch allow several operations, in general
floating-point evaluations, to be executed simultaneously in just a machine instruction time.

2. SMP computers or Parallel Symmetric Multi-Processor. In this category of machines, several processors of the
same computer are physically linked and they have access to shared memory. The processors use the memory
to communicate.

3 Multi-computers. Several independent computers linked by an interconnection network compose these
machines. These computers perform the processing nodes of the parallel machine, while the interconnection
network allows the communications between the nodes. An important characteristic of this model is the fact
that the nodes can work isolated like normal workstation.

This paper shows, with the help of a classic literature problem, that the introduction of parallelism greatly reduces
the processing time without changing the result accuracy.

2.  Physical and mathematical model

A Newtonian fluid flow in a two-dimensional closed cavity under natural convection effect is considered. The flow
is laminar and steady state. The vertical walls are kept at uniform, constant, temperatures. The horizontal walls are
perfectly insulated. A cavity diagram is shown in Fig. (1).
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ed to have constant properties except insofar as the buoyancy is concerned, i.e. the Boussinesq
r temperature dependence of density is utilized, as defined in Eq. (1).
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ar momentum in y direction.
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The independent dimensionless parameters appearing in the problem are: aspect ratio, LHAR = , Rayleigh

number, ναβ 3HTgRa ∆=  and Prandtl number, αν=Pr .

3. Numerical Method

Equations (2) to (9) have been discretized on a staggered grid by using a finite volume method (Patankar, 1980) and
the interpolation method used is the Power Law (Patankar, 1980). The coupling pressure-velocity is solved by
SIMPLEC algorithm (Van Doormaan and Raithby, 1984). The dependent variable in the momentum equation is the
contra-variant velocity component (Pires and Nieckele, 1994), which is stored staggered of the others variables to
prevent oscillations in the solution. The Newton-Raphson algorithm is used to solve the resultant equations system. All
conservation equations are converged when the normalized residue are lesser or equal than 1x10-6. Uniform meshes are
select in the present work.

A multi-computer is a parallel machine classified as MIMD (Flynn, 1966). These machines are also called
multiprocessor because they have more then one processor. In this computer architecture each processor possesses a
private memory. There is a communication network to support the multiprocessor communications. The programming
model adopted is the message passing (Hwang 993), and implemented with PVM (Parallel Virtual Machine), Geist et.
al (1994). This is an asynchronous parallel programming model communication that allows the data, process
synchronism and interrupts signals to be exchanged between the processors, as show in Fig (2).

Figure 2. Virtual Parallel Machine.

The parallel algorithm is implemented as process farm Master-Slave (Hwang 1998) and it has a sequential phase
and another parallel phase. The master sends the data to be processed to the slaves. After receiving the partial results
from the each slave the final result is computed by the master.

During the sequential phase all the slaves executes the same task in the solution domain, Fig. (3a). In the parallel
phase each slave in virtual machine executes its parcel of the processing. However, to avoid the discontinuity in the
solution is necessary to create regions of interference between the slaves. This interference region is created by
exchanging information of the limit columns between adjacent slaves, as show in Fig. (3b).

Figure 3 a) Computational domain. b) Domain of each slave showing the exchange of information in the interference
region.

In this work the parallel machine is built by a set of 24 Pentium III 935 MHz computers with 128 Mb of RAM and
10 Gb of hard disk. The network is the Fast Ethernet 10/100 (IEEE 802.3u) switched. The operational system is the
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LINUX, (Mandrake 8,1 kernel version 2.96-0.62), the library of message passing is the PVM 3.4.3 and the compiler is
the GNU Fortran77 (0.5.2.6), all distributed freely.

4. Results

To validate the parallel algorithm the laminar natural convection in a closed cavity problem is solved. The
dimensionless parameters are: 210x08.2Pr −= , 610x06.1Ra = and 0.1AR = . Initially a test mesh is performed. Figure
(4) presents the global Nusselt number estimations, defined as Eq. (10), with the meshes are refined.
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The results show that the problem’s solution remains practically unchanged from the mesh of 82x81 points, with a
maximum deviation of 0.6 percent on the global Nusselt number value.

Figure 4. Mesh test - global Nusselt versus mesh refinement.

The solution is compared with the numerical results of Viskanta et. al (1986) through the global Nusselt number. In
this comparison, the current paper uses a uniform 42x41 points mesh, and the global Nusselt number is 804.6Nu = .
Viskanta uses a 41x41 points mesh, and the global Nusselt number is 701.6Nu = . The result presents 1.54 shunting line
percent. Also, the numerical results are compared with the Wolff et al (1988) experimental data. The Fig. (5) shows the
distribution of temperature along horizontal axe in three different positions. Good agreement between the results is
observed where the greatest discrepancies are next to the center and to the top wall. However, in these regions, the
numerical solution presents a qualitative correct behavior.

Figure 5. Comparison between numerical results and experimental data by Wolff et al (1988).
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Figure (6) shows the isotherms and stream function lines. The temperature reduction in right top and left bottom is
due small vortices in those places.

Figure 6. Isotherms and stream function.

In attainment of the numerical results, shown previously, the gradual mesh refinement results on a computational
cost by raising the time. This rise of the computational time is shown in Fig. (7) and it discloses highly not linear. For
coarse meshes, until 82x81 nodal points, the reply time goes approximately of some minutes until 2.5 hours. Refining
further the mesh, the processing time grows and reaches 67 hours for 202x201 nodal points mesh.

Figure 7. Execution time in function of mesh.

When parallel processing is applied successfully to a problem, the execution time decrease. The measure which
relates this time reduction with the number of processors is called speedup and, is defined by the ratio between the
execution time with one processor and the execution time with more than one processor. Speedup less then unit means
that the processing time increases with the increase of the processors.

Figure (8) shows the speedup variation with the number of processors. For very small meshes, until 42x41, the
increase of the number of processors makes the execution time to go up. It occurs because the communication time
became bigger than the waste time in each unit processor. For the 62x61 mesh there is a small speedup that quickly
converges to a same value resulted by just one processor. In this case, it can be affirmed that the use of parallelism is
not justifiable. The 82x81 mesh already presents a reasonable improvement in the introduction of parallelism. Note that
the execution time goes down approximately twice when 4 processors are used in the cluster. It can be notice that the
gain achieved with more than 4 processors do not result in equivalent decreasing of processing time. The meshes
122x121, 162x161 and 202x201 presents good values of speedups until the inclusion of eight processors. The
processing time decreased by a factor of 4. Beyond the 122x121 mesh the results presents stagnation in speedup, when
the mesh reaches 162x161 a small improvement of 4.5 can be noted, at the end the mesh reaches 202x201 and the
speedup hits a value little greater than 5. This is a maximum value achieved in this work.

In all curves reduction of the efficiency is observed. The efficiency is represented by curve inclination. The
measure shows that the efficiency decreases when the number of processors increases. The explanation for this is that
when increasing the number of processors occurs a work reduction that each unit processor must be executes. If the
volume of work of each processor gradually goes down the processing time goes down too. When the processing time
becomes too small the communication time becomes the most important whole part.
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Figure 8. Speedup versus number of processors.

Table (1) presents the processing time hours. In this experiment the maximum value of speedup is not so high how
as those found by Tanenbaum (1999). However, this value becomes relevant when the time of processing is very high
with one processor in the cluster. Also, this table helps in the virtual machine management.

Table 1. Processing time variation (in hours) with mesh and number of processors.

22x21 32x31 42x41 62x61 82x81 122x121 162x161 202x201
1 0,03 0,09 0,19 0,67 2,18 10,01 29,48 66,26
5 0,12 0,18 0,25 0,52 0,99 3,23 9,50 22,18

10 --- --- --- 0,53 0,95 2,62 6,77 15,33
20 --- --- --- --- 1,05 2,67 6,37 12,96

Finally is analyzed the solution accuracy when the parallelism is used. Table (2) presents the global Nusselt number
relation, Eq. (10), for the several meshes and choices in the number of processors in cluster. The result shows that
independent of the number of processors the problem‘s result is always the same, conferring to the code the necessary
precision.

Table 2. Global Nusselt number variation with mesh and processors number.

22x21 32x31 42x41 62x61 82x81 122x121 162x161 202x201
1 7,0111 7,0804 6,8038 6,2247 6,0078 5,9703 5,9760 5,9923
2 7,0111 7,0804 6,8038 6,2247 6,0078 5,9703 5,9760 5,9923
5 7,0111 7,0804 6,8038 6,2247 6,0078 5,9703 5,9760 5,9923

10 7,0111 7,0804 6,8038 6,2247 6,0078 5,9703 5,9760 5,9923
20 7,0111 7,0804 6,8038 6,2247 6,0078 5,9703 5,9760 5,9923

5. Conclusions

The result shows that the use of the cluster with the message-passing interface, PVM, was successfully applied to
the closed cavity’s problem. The numerical results were compare to experimental data and with another numerical result
getting good agreement. The parallel processing made possible to reduce the computing time from 66 to about 13 hours.
The results show that the introduction of parallelism does not affect the precision of the code and provides a significant
reduction in the processing time. Comparing the time processing achieved with different number of processors and the
different mesh sizes is possible to scale the parallel machine in order to improve the best efficiency. In Tab (1) the best
efficiency for 202x201 mesh occurs to 10 processors. When 20 processors are applied, the computation time is reduced
to 2.3 hours. The decision in use 10 or 20 processors depends on the availability or not of the computational resources.
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