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Abstract. Turbulent transfer of momentum and heat over rough surfaces are numerically simulated. The effects of sudden changes are 
predicted in the cases of turbulent flow around surface-mounted two-dimensional ribs when subjected to a sudden change in surface 
roughness and temperature. A particular interest of this study is to investigate the sudden changes in the surface roughness for 
developing thermal boundary layer flow. A two-equation k-eps �turbulence model is employed to simulate the turbulent transport. 
Equations of boundary-layer type were used and a forward marching method was employed for sweeping the computational domain. 
Wall functions that take into account surface roughness are used to specify the boundary conditions at the surface. The effects of the 
sudden changes of roughness accounted for the wall functions in the k- eps turbulence model are compared with available experimental 
data. Four configurations are simulated here, namely one extensive uniformly smooth surface, one extensively uniform rough case, and 
two cases where the surface roughness varies suddenly from a smooth to a rough and from a rough to a smooth surface. Results are 
presented for velocity and skin friction coefficient, in addition to comparisons with experimental data. The use of a parabolic solver 
showed good agreement with experimental values for the mean and local quantities.  
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1. Introduction  

 
One feature of the general turbulent heat transfer problem is that of fluids with low thermal conductivity, i.e., with 

Pr>1. In this case most of the resistance to heat transfer is concentrated in a thin layer near the wall, where it is difficult to 
conduct experimental measurements. The slightest errors in determining the transport mechanisms within the viscous layer 
and the fully turbulent region result in disagreement between analytic and experimental results.  

The present work is concerned with flows that develop over flat surface with changing surface conditions. In 
particular, we will be looking at flows that present abrupt changes in surface roughness and temperature. The theory to be 
used here is, therefore, expected to account for these effects. Here, we will use the k- ε model to describe the properties of 
the boundary layer in the surface layer, and validated the results against the experimental data of Avelino (2000). 

The k- ε model will use wall functions to represent the velocity and temperature profiles near the wall so that a local 
analytical solution for the inner region will be used as a boundary condition for the outer solution. This inner solution must 
take into account the local changes in the flow such as those caused by the changes on the surface roughness. Also, 
algebraic expressions that predict the sudden changes at the vicinities of the abrupt variation of the temperature and 
roughness conditions are applied. The local changes are then accounted for by logarithmic profiles that take as a 
characteristic length the displacement in origin, which has been experimentally studied by Avelino et al.(1998). 

The present work is, therefore, to show the reader the influence of algebraic expressions that predict the sudden 
changes at the vicinities of the abrupt variation of the temperature and roughness conditions and how the k- ε model stands 
for flows over step changes in surface roughness and temperature if appropriate boundary conditions are made use of. 
Accordingly, the use of simp le numerical tools for preliminary engineering design, instead of using memory-demanding, 
large Computational Fluid Dynamics (CFD) codes, can benefit the overall design process if repetitive calculations are 
mandatory. If no back flow is in order, marching-forward techniques, implemented along with isotropic turbulence 
models, provide an economical means for conceptual design using cheaper PC-based workstations.  

Acknowledging the advantages of “fast” parabolic solvers, the work of Matsumoto e de Lemos (1990), presented 
results for the developing time-averaged and turbulent fields in a coaxial jet along a circular duct of constant area. Later, 
de Lemos & Milan (1997), extended their calculations to flow in long ducts through varying cross sections. Similar results 
for ducts with plane walls have also been documented in Braga & de Lemos (1999). The numerical methodology 
developed  in all of that work is here employed.  There, use was made of the  isotropic k- ε model and the wall  log-law for 
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velocity over smooth surfaces. Therefore, the present calculations used additional wall laws in order to account for 
rough walls. 
 
2. Mean Flow and Turbulence 
 

Next, the geometry investigated is detailed, followed by the governing equations, the numerical method used and the 
results obtained.  

 
2.1. Geometry 
 

The flow here analyzed consists of a confined stream inside a rectangular channel of constant cross section. 
Situations concerning surface roughness variation along the longitudinal coordinate are here considered. A schematic of 
the configuration under study is shown in Fig. 1. Four configurations were placed in the wind tunnel by alternating the 
position of the rough elements in the test section. The smooth surface was simulated as a reference case. In the other 
tree configurations, the roughness adopted was composed of transversally grooved surfaces with rectangular slats with 
height k=3mm, width s=12.0mm, and pitch λ=24.0mm.The grooves between the rough elements are 12mm wide 
(w=12.0mm).  

It should be pointed out that mean velocity profiles are experimentally observed when the flow is subjected to 
sudden changes of the geometry conditions at the wall. In the vicinities of the abrupt change, the flow experiences a 
transition from one extensive region to another, being affected by the new geometry, until it reaches the fully rough 
regime. The theory used here does not represent the transition region, but the region where the flow has already reached 
the fully rough regime, where the numerical prediction shows good agreement with the experimental results.  
 
2.2. Boundary Layer Equations 
 

For generality, the equations below are written embracing planar and axi-symmetric cases. The equations are also 
presented in a simplified form, already making use of the concept of isotropic turbulent viscosity, µt. 
 

0 = 
y

v)r(
 + 

x

u)r(

∂
∂

∂
∂ ρρ ηη

, (1) 









∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

y

u
   r  

yr

1
+

x

p
  - = 

y

u
v+

x

u
u effµρρ η

η . (2) 

 
Accordingly, the equations of continuity of mass and x-momentum for a two-dimensional, source-free, low speed, 

planar turbulent boundary (mixing) layer can be written as, 
In (1)-(2) u, v are the velocity components in the axial and transverse direction, respectively, ρ the fluid density, p 

the static pressure, and µeff the effective (turbulent+laminar) coefficient of exchange given as, µµµ teff  +  = , where µ is 

the molecular viscosity. As mentioned before, equations (1)-(2) are written in a compact notation embracing planar 
(η=0) and axi-symmetric (η=1, r=y’) cases. Further, in the k-ε  model one has (Jones & Launder, 1972), 

 
ερµ µ   /  k  c  = 2

t , (3) 

 
where cµ is a constant. Transport equations for k and ε are written as (Launder & Spalding, 1974), 

 

 
Fig. 1 – Test section and coordinate system for the smooth to rough surface. 
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In (4), kt
k

eff   +   = σµµΓ  and ε
ε σµµΓ teff +   = where the Γ ’s are the effective coefficient of exchange and the σ’s 

are the turbulent Prandtl/Schmidt numbers for k and ε. The last terms in (4) are known as "source" terms and are given 
by  )-(P  = Sk ερ and )c Pc( = S 21k ερ ε

ε −  where c1=1.47, c2=1.92 and cµ = 0.09. The production term reads 
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2.3. Coordinate System 
 

The numerical solution of Eqs. (1), (2) and (4) in the coordinate system x-y presents some difficulties in regard to 
numerical precision. In this system, there is the disadvantage of having only a few nodal points where the boundary 
layer is “thin” and too many points where the thickness of the boundary layer has attained substantial growth. This work 
uses the coordinate system x-ω, proposed in Patankar (1988), by doing; 
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where Ψ is the stream function and the subscripts I and E refer to the internal and external boundary layer limiting 
surfaces, respectively. 

The equation set formed by (1)-(2)-(4) seen before can be written in the coordinate system x-ω as (Patankar, 1988), 
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In Eq. (7), φ can represent any of the dependent variables (φ =u,v,ε),  k
effΓ  is an effective coefficient of diffusion 

for φ and Sφ a source term. The discretization of (7) is obtained through the control volume method (Patankar & 
Spalding, 1972, Patankar, 1980) implying in (see Fig. 3a for notation), 
 

b+ a+ a+ a= a PPAPASSNNPP φφφφ  (9) 

 
where the coefficients involve convection, diffusion and source terms. For the solution of system (9) the Three Diagonal 
Matrix Algorithm is here adopted. 
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Fig. 2 – General notation for smooth wall model: a) Control volume, b) wall layer model. 



 

 

2.4. Inlet Conditions 
 

Inlet flow is given a uniform distribution and the values of k and ε at entrance were assumed as, 
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where C = 1/2Tu 2, ( ) m

2
’

i Uu3Tu =  is the turbulence intensity at inlet, Um is the overall mean velocity, K is the von 

Kármán constant (K=0.41) and y the distance to the wall. Halfway to the top surface (y=H/2) the symmetry condition is 
implemented for all dependent variables φ= u,k,ε, as ) 0 = y 0=y∂∂φ . 

 
2.5. Wall Treatment for Smooth Surfaces 
 

The mathematical model seen above is not valid inside the layers very close to the wall where viscous effects are 
predominant. Velocity at the grid point closest to the wall is handled by the usual Wall Function approach described in 
Launder & Spalding (1972). The notation below refers to Fig. 3b where the location of the grid point closest to the wall, 
N, is identified. The wall function gives for the wall shear stress at node N, 
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where E is a constant. In the wall region, the use of the wall function, characterized by the expressions, 
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and the employment of the assumption of "local equilibrium" for turbulence (P=ε), gives for point N, 
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2.6. Wall Treatment for Rough Surfaces 
 

For rough surfaces, the equations above for the law of the wall are modified to take into account the effects for 
roughness. The basic facts about the laws of the wall for the velocity profiles have been discussed elsewhere (see 
Avelino et al. (1996)).  

For computing the flow over the rough surface at the bottom of the wind tunnel, as shown in Fig. 1, Eq. (12) is 
modified for including the roughness function. Accordingly, an expression for the velocity profile valid for all types of 
roughness can be written if we make 
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The domain of validity of (15)-(16) is the fully turbulent region and that can be verified through application of the 
single limit concept of Kaplun (1967) (see Silva Freire & Hirata, 1990). 

In the above equations all symbols have their classical meaning; Ci , i= K, D is a constant characteristic of the type 
of roughness; the coordinate yT is the distance measured from the crest of the roughness elements (y = yT + ∈); ∈ is the 
displacement in origin, referred to in literature as the error in origin as well. Equations (15) and (16) will be used to 
specify the boundary conditions on a k-ε formulation of the problem. The values for A, Ci and ∈ used were 5.15, 4.3 
and 1.9mm, respectively. Finally, rewriting (11) in the form )( yUw ∂∂= µλτ  gives further, 
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2.7. The Displacement in Origin 
 

The determination of the displacement in origin for the velocity profiles suggests that all the procedures advanced 
for the evaluation of ∈ can be extended to the temperature profiles for the evaluation of ∈t. Thus, a straightforward 
extension of the method of Perry and Joubert(1963) to the temperature profiles can be made to evaluate ∈t, in the same 
way as for the velocity profiles. 

The determination of the displacement in origin is significant for the evaluation of the properties of the flow over a 
rough surface, including all local and global parameters. All graphical methods for its determination, however, assume 
the existence of a logarithmic region, which may not occur near to a step change in roughness. The estimated values of 
∈t were obtained experimentally in Avelino(2000). In the numerical computations the expressions in Table 3 will be 
used to represent ∈t. 
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Figure 3. Displacement in origin for temperature profiles - Type I rough surface. 

 
In the same way as for the velocity profiles, to determine the displacement in origin, the temperature profiles were 

plotted in semi-log form, in dimensional coordinates. Next, the normal distance from the wall was incremented by 
0.1mm and a straight line fit was applied to the resulting points. Searching for the maximum coefficient of 
determination, the best fit was determined. Other statistical parameters were also observed, as the residual sum of 
squares and the residual mean square. 

It is seen the experimental data agree with this analytical result for the smooth surface. Figures (3) and (4) present 
the evaluated temperature error in origin for all types of surfaces considered. 
 
Table 1 – Estimated expressions for ∈t obtained from the experimental data. 
 

 Estimated expressions of ∈t Estimated values for exponent ‘m’ 

Surface Type I ∈t = 0.0013 xm  m=1.11 

Surface Type II ∈t = 0.0121 xm  m=0.95 

Surface Type III ∈t = 0.0180 xm  m=1.07 
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Figures 4. Displacement in origin for temperature profiles – (a) Type II rough surface and (b) Type III rough surface. 

 
Expressions (15) and (16) can be extended to the thermal turbulent boundary layer through asymptotic or 

dimensional arguments. Based on similarity arguments for transfer processes in turbulent flows, Silva Freire and 
Hirata(1990) proposed to write the temperature law of the wall as 
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and Di , i= K, D; is a constant characteristic of the roughness. 
 

Equations (20) and (21) are the law of the wall formulation for flows over rough surfaces with transfer of heat, and 
will be used to specify the boundary conditions on a k–ε formulation of the problem.  
 
3. Numerical Algorithm and Computational Details 
 
3.1. Pressure gradient 
 

Determination of the unknown pressure gradient is handled as explained in Patankar (1988). That approach consists 
basically in finding the "zero" of a function f(dp/dx) defined as; 
 

( ) ΨEIductcalc A-A =f(dp/dx)  (18) 

 
where the left hand side represents the discrepancy, at the downstream position, between the calculated and real duct 
areas. 
3.2. Integration step (xP - xA) 
 

For the numerical solution of (9) at axial station xP, the integration step size (xP - xA) determines the rate at which 
the longitudinal coordinate x is swept along the duct. In the vicinity of the boundary layer leading edge (x≈0), the 
dependent variable φ  (φ=u,v,ε,) varies more rapidly with x, if one considers the initial growth rate of the boundary 
layer. Therefore, the use of a small but constant value for (xP - xA) could be appropriate for the rapid changes of φ in the 
developing region but would imply in an excessive number of integration steps at the subsequent developed region. 
Likewise, a large value for (xP - xA) in the beginning of the sweep could, at the inlet region, cause numerical instability 
due to the large variation of all dependent variables within initial boundary layer development. 

In this work, the integration step size was adopted as proportional to the distance from the point in question to the 
beginning of the calculation as: 
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where indexes "I" and "L" correspond to the initial and final x positions, respectively, H is one half of channel height 
and β is a constant. 



 

 

 
3.3. Transversal distribution of nodal points 
 

In the boundary layer close to the duct wall the discretization of the production term for k, Eq. (5), is rather 
sensitive to the transverse grid layout. A flexible grid point distribution is obtained by the use of a coordinate 
transformation of the type φ=(y’)α, giving for discrete positions along the transversal coordinate, 
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where "i" in (20) is the index of the nodal point in question and α a parameter for grid control.  
 
4. Results and Discussion 
 

Numerical results calculated with the model shown above were used to simulate the flow over the flat surface of 
Fig. 1. Four cases were investigated and classified according to the relative smooth-to-rough length section. 
Computations used different wall boundary conditions, based on Eq. (17), which were applied over the corresponding 
surface length detailed in Table 2. The results to follow were compared with measurements of Avelino et al. (1999). 

Figures 4 to 7 show comparisons of T+ versus y/δ , where δ is the boundary layer thickness, for the four different 
cases presented in Table 2. Profiles at fifteen longitudinal stations are compared with the numerical prediction showing 
good agreement. The lines represent the numerical predictions whereas experimental values are plotted with symbols. 

Profiles here calculated at stations in the vicinity of the surface conditions variation, for T+ did not quite match 
those of the experimental dada, most likely due to the transition region explained earlier. In this work the value of the 
displacement in origin was assumed constant, although it adjusts itself when over a new rough geometry. 

The interesting feature of Figs. 5 to 7 is that in spite of using a parabolic solver and a linear k-ε model, the present 
calculation seems to represent quite well the phenomena.  

Here, based on the results shown, it is suggested that, for accurate flow prediction, an expression representing the 
increase in ∈ should be implemented, to better predict the development of the boundary layer immediately after the 
changes in the wall roughness. In other words, a function of a characteristic length scale of the rough elements can be 
used for the prediction of the velocity profiles in the transition region of the flow.  

After observing Figs. 5 and 6, the overall conclusion is that for the smooth surface, and in the region upstream of a 
step change in roughness, the numerical prediction seem to agree reasonably well with the experimental results, 
however, in the transition region of the boundary layer flow, a small discrepancy can be observed close to the wall. 
Those differences are likely due to the gradual growth of the displacement in origin, until it reaches a constant value, 
where the velocity profiles are then accurately predicted.  

Corresponding skin friction coefficient values are shown in Figs. 8 to 11. In these figures, numerical prediction is 
compared with those calculated through an integral method and a graphical determination, based on the experimental 
results. For the case of a uniformly smooth surface, a theoretical correlation is also included.  

The nature of the variation of the temperature profile that is a function of Pr is quite important. The effect of 
properties variations on the velocity profile for opposite directions of heat flux is different. This is also related to the 
nature of variation in the temperature profile. If air is heated by the plate, its viscosity and thus the Pr at the wall will 
increase.  

It is clear from Fig. 8 that the numerical prediction is in good agreement with the theoretical correlation for 
turbulent boundary layers over smooth surface, and with the experimental results, either calculated by using the integral 
balance of the momentum or through the chart method. 

It can be noticed in Figs. 9 and 10, where the step change in roughness are present that the numerical prediction 
responds very fast to the new surface condition. In Fig. 9, the displacement in origin presents an increase following the 
step change in roughness, increasing the skin friction coefficient, what is expected for the flow over a rough surface. 
This effect is well captured by the numerical model. Also the momentum balance and the graphical method are in good 
agreement.  

For the configuration where the flow leaves a rough surface, to come upon a smooth surface, Fig. 10, a departure 
from experimental values can be observed immediately after the sudden change in the roughness. This fact is due to the 
transition region that the flow undergoes following the surface step change.  

Table 2 – Length of smooth and rough sections for the cases investigated 

Case Smooth Surface Rough Surface 

Fully Smooth 0m< x < 2m - 

Smooth to Rough 0m< x < 1m 1m< x < 2m 

Fully Rough - 0m< x < 2m 

Rough to Smooth 1m< x < 2m 0m< x < 1m 
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Fig. 5 – Mean temperature over rough surface type I, comparison with experimental results. 
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Fig. 6 – Mean temperature profiles over rough surface type II, comparison with experimental results. 
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Fig. 7 – Mean temperature profiles over rough surface type III, comparison with experimental results. 



 

 

When in contact with a smooth surface, the displacement in origin tends to decrease until it vanishes, and this can 
be noticed by either the integral method or by the chart method, conversely, in the parabolic solver, this effect cannot be 
caught. In fact, in the numerical model above, no mechanism that could bring back information from downstream 
positions is considered. The flow, in this case, can be characterized as of partially parabolic nature requiring an elliptic 
solver for the pressure field.  

 

For engineering purposes, however, the parabolic treatment has proven to be adequate for reproducing the major 
features of the flow.  

These results are coherent with the idea of limiting the present model to the regions of the flow where the 
displacement in origin has already reached a constant value, in the fully rough region of the flow.  

The determination of the displacement in origin, ∈, is crucial for the evaluation of the properties of the flow over a 
rough surface, including all local and global parameters such as, e.g., the skin-friction coefficient and the momentum 
thickness. All graphical methods for its determination, however, assume the existence of a logarithmic region, which 
may not occur near to a step change in roughness. 

 
5. Concluding Remarks 
 

This work presented computations with the standard k - ε  model for simulation of turbulent boundary layer flows 
that present abrupt changes in the surface roughness. 

Comparisons with experimental data indicated a reasonable agreement. More specifically, for surfaces subjected to 
sudden changes in roughness, demonstrated that the methodology here employed gave better or comparable results than 
those calculated with more sophisticated numerical tools and employing more elaborated turbulence modes. Accuracy 
of the calculated skin friction coefficient is also limited in the region where the displacement in origin is still adjusting 
itself to the new surface. 

Essentially, the work herein suggests that, for accurate prediction of simple flows, proper implementation of the 
numerical model and the robustness and stability of the algorithm employed are important factors to be considered. 
Accordingly, for boundary layer flows, isotropic turbulence theories and simple parabolic codes can provide an 
economical and reliable tool during preliminary steps in the overall design process of engineering equipment.  
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