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Abstract. Efficient mathematical models can be used to preview the behavior of the fluids present in the reservoir under several 
operation conditions. The main goal of this study is to obtain a numeric solution for two-phase problems with complex geometry 
reservoirs, through the finite-volume method in boundary-fitted coordinates. The physical model adopted is the standard black-oil, 
simplified to an immiscible, two-phase (oil-water) flow. It can be applied for studies in reservoirs for heavy oils without volatile 
hydrocarbons. The mass conservation equations, written in the mass fractions formulation, are solved using a fully implicit 
methodology and the Newton's method. In spite of computational time consumption, the great advantage of this methodology is the 
possibility to use larger time steps. The UDS scheme is used to evaluate the phase motilities in each control volume face. Attention 
will be given to the Jacobian matrix construction. The results are presented in terms of Newton’s and solver iterations, CPU time 
used for build the Jacobian matrix and to solve the linear systems and for the whole simulations. 
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1. Introduction  
 

Before investing a new petroliferous basin, the exploration industry needs to know parameters that assure its 
commercial viability. If the financial return will not be guaranteed, the high costs involved in the implantation of 
exploration structures become a risky transaction. Generally, when a reservoir starts operate, the high pressures below 
the earth’s surface are enough to drive the flow up to wells. As time goes on, pressures became equal in all positions 
inside rock pores and some recoverable oil keeps into reservoir, unable to flow. An artificial mechanism becomes 
necessary to restore the pressure gradient in a process so-called Secondary Recovery. Even when the oil production 
from a reservoir starts to decrease, the field engineer may decide to increase the flow by injecting water into the 
reservoir. Water enters by injection wells and moves some of the remaining oil in the rock toward producing wells in 
the same reservoir. The producing wells then pump up the oil, water and gas. It is normal to use several injection wells 
surround each producing well. This method is so-called water flooding. Water flooding is the least expensive and most 
widely used secondary recovery method.  

The study of oil reservoirs using laboratory experiments is a complex task. The confident reproduction of all fluid 
and rock conditions (temperature, pressure, geometry, composition) in the surface is almost impossible, or economically 
difficult.  

In the petroleum industry, simulation may be used to predict the behavior of fluids inside a reservoir under different 
operation conditions. The physical problem may be simulated through reservoir simulation and studied including porous 
media (rock where the flow occurs), reservoir fluids (water, oil and gas), as well as the geometries of the impermeable 
borders. Major influence variables in the reservoir‘s useful life can also be studied, such as: composition, flow rate, 
characteristics of the injection fluid; correct location of injector and producing wells and changes of these positions 
according to the most current conditions of fluids saturations inside reservoir. 

This study shows a numeric solution for complex geometry reservoirs, using the finite-volume method in boundary-
fitted coordinates. UDS (Upstream Differencing Scheme) is used to evaluate the phase motilities in each control volume 
face. Mass conservation equations, written in the mass fractions formulation are solved using a fully implicit 
methodology and the Newton's method. In spite of computational time consumption, the great advantage of this 
methodology is the possibility to use larger time steps, Marcondes (1996).  

The major issue of this paper, from the numerical point of view, is to illustrate the solver performance in the 
Newton method solution using Jacobian matrices constructed by five-points and nine-points schemes, considering 
parameters such as: Newton’s and solver iterations; CPU time used for built the Jacobian matrix, solved the arising 
linear systems and for the whole simulations. Details about both schemes will be given afterwards. 
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2. Mathematical modelling 
 

The standard black-oil is a mathematical model that can be used in reservoirs with heavy or low volatility 
hydrocarbons. It is an isothermal model where the behavior among the phases is governed by pressure and volume 
relationships. The characteristics of the model are: 
 

• There are three components (water, oil and gas) and three phases (water, oil and gas); 
• Water and oil phases neither mix nor interphase mass transfer; 
• The gas component is dissolved in oil phase; 
• Water and oil components cannot be found in the gas phase. 

 
In the present study, a two-phase (oil-water) immiscible flow was considered. Neglecting the gravitational and 

capillarity effects, mass conservation equation for a generic phase p is given by 
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where the superscript p indicates the phase p, φ  is the porosity, mρ  is the average density of the mixture, Z is the mass 
fraction, P is the reservoir pressure, pm~  is the mass flow per unit of volume of the reservoir and p~λ  is the phase 
motility, defined as follows 
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In Eq. (2), k is the absolute permeability, rpk  is the relative permeability, pρ  is the density and pµ  is the viscosity 

of phase p. 
Writing Eq. (1) for the oil and water phases, there are three unknowns (Zo, Zw and P) and two equations. The 

equation needed for the solution comes from global mass conservation, is given by, 
 

1ZZ ow =+  (3) 
 

More details of the Black-oil formulation in terms of mass fractions can be found in (Prais and Campagnolo,1991 
and Cunha, 1996). 

 
3. Numerical solution 
 

Due to nonlinearities present in the governing equations, specially that one in the phase mobility, those equations 
do not have analytical solution. A numerical solution, such as finite-volume method, can be an alternative to this 
problem.  

The main advantages of cartesian grids are the simplicity of the conservation balances and the easy solution of the 
resulting linear systems. The disadvantages are: difficulty to model complex geometries reservoirs, geologic faults, 
complex distribution of wells and grid orientation effect, Todd et all (1972). Non-orthogonal boundary fitted grids can 
turn the numerical method flexible to treat reservoirs with more complex geometries (Maliska, 1995; Cunha et all 
1994).   
 
3.1. Transformation of the governing equations 
 

Considering only 2D problems Eq. (1) can be written for boundary fitted coordinates as,  
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where the coefficients p

iD  are given by 
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Equation (5 a-c) have all grid information, Maliska (1995). 

 
3.2. Integration of the governing equations 



 

 

 
Integrating Eq. (4) in space and in time for the volume shown on Fig. (1), the following equation is obtained 
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where γ∆η∆ξ∆=∆V  is the volume dimensions on generalized coordinates system. 
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Figure 1 – Infinitesimal volume. 
 

All differentials terms in right hand side of Eq. (6) are approached by central differencing scheme. The pressure 
gradients in the east face, for example, are given by, 
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To evaluate the phase mobility in each control volume face it was employed the Upwind Differencing Scheme. 

Using again the east face λp is given by,  
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3.3. Fully implicit methodology 

 
In this methodology the unknowns P and Zo are implicitly calculated at the current time step. The equations are 

linearized by Newton’s method. Passing to the left side all terms of Eq. (6) the following residual equation is obtained: 
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Expanding this expression in Taylor’s series, we have 
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where k is the iteration level and X represents the unknowns P and Zo.  

In the Newton’s method, the solution in every time step is given when the residues tend to zero. Therefore, Eq. (10) 
in the short form is given by: 
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In the matrix form, Eq. (11) can be written by: 



 

 

 

 
FX −=∆A  (12) 

 
where A is the Jacobian matrix of the residual function F on the k-th iteration. 

 
The solution of the linear system, Eq. (12), allows calculating the P and Zo values till the mass conservation in each 

time step is obtain. The Jacobian matrix A is a block matrix, i.e., all its elements are square matrices. 
 

3.3.1. Nine points scheme 
 
On this scheme, all neighboring points are considered on differentiation of the residual functions. Using this 

scheme, Eq. (11) will be given by 
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3.3.2. Five points scheme 

 
According to Cunha (1996), to simplify the linear system, the derivatives of the cross terms (SW, SE, NW, NE) 

may be considered only in the residual function. This procedure avoids additional terms in the Jacobian matrix when the 
coordinates lines are non-orthogonal. Using this scheme, the Eq. (11) can be rewritten as follows 
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This approach simplifies the resultant linear system but it can either slow down the convergence rate or hamper the 

convergence if the mesh is highly non-orthogonal. In the results section of this work, some comparisons between both 
schemes will be shown and analyzed. More details about whole mathematical formulation can be found in (Cunha, 1996 
and Coutinho, 2002). 
 
4. Results 
 

The example selected to evaluate the behavior of the approaches just mentioned in the last section was originally 
proposed by Hirasaki and O´dell (1970) and after studied by (Hegre et all,1986; Czesnat, 1998). They considered a 
reservoir with two producing wells equidistant from an injection well, as shown in Fig. (2). To investigate the grid 
effects they compared the volumetric production rate of each producing well. The mesh is aligned with the line that 
connects one producing-injector well and is diagonal to another pair, as shown in Fig. (3). 
 

 
 

Figure 2 – Wells positions. 
 



 

 

 
 
Figure 3 – Grid 24x6 volumes with 45º inclination. 
 

For comparisons, meshes with 24 x 6 volumes were used, Fig. (3), and another with 48 x 20 volumes. Table (1) 
gives the relative permeabilities of the phases and Table (2) shows characteristic data of fluids and reservoir used in this 
work. Figure (4) presents saturation fields, in the elapsed time of 500 and 2000 days. Note that mesh with less number 
of volumes have generated results with high grid effects and numeric dispersion too. The injected water reaches the 
producing well 1 (aligned with the grid) faster than producing well 2. Considering that each producing well is 
equidistant to the injector well, physically, this phenomenon couldn’t occur. This undesirable problem causes errors in 
water irruption time on producing wells. To investigate grid effects on reservoir simulation, many researches are being 
done in present day (Marcondes, 1996 and Czesnat 1998). 
 
Table 1 – Relative permeabilities of the phases. Source: Hegre et all (1986). 
 

Sw krw kro 
0,25 0 0,92 
0,3 0,02 0,705 
0,4 0,055 0,42 
0,5 0,1 0,24 
0,6 0,145 0,11 
0,7 0,2 0 

 
Table 2 – Fluids and reservoir data. Source: Hegre et all (1986). 
 

Porosity φ = 0,19 Residual oil saturation Sr
o = 0,2 

Permeability k = 0,049.10-12 m2 Phases density ρw = ρo = 1000 kg/m3 
Height h = 18,3 m Water reference volumetric formation factor Bref

w = 1 on Pref 
Initial pressure Pi = 27248.103 Pa Oil reference volumetric formation factor Bref

o = 0,96 on Pref 
Rock compressibility cr = 0 Pa-1 Reference pressure Pref = 27248.103 Pa 

Oil compressibility co = 1,45.10-9 Pa-1 Water viscosity µ w = 0,5.10-3 Pa.s 
Water compressibility cw = 0,44.10-9 Pa-1 Oil viscosity µ o = 2,0.10-3 Pa.s 

Well radius rw = 0,122 m Injection rate qinj  = 302,1 m3/dia 
Initial water saturation Si

w = 0,2 Producing rate qprod  = 159 m3/dia 
 

Grid 24x6 volumes 

  
500 days 2000 days 

Grid 48x20 volumes 

  
500 days 2000 days 

 
Figure 4 – Water saturation fields in two times. 
 

The goal is to simulate the same problem using meshes with many levels of orthogonality. Initially the grid is 
cartesian, Fig. (5-a), i.e., it has a 90º inclination with a horizontal line. Other grids with 80º, 60º, 45º, 30º and 20º 
inclinations were obtained distorting the original grid. As can be seen on Figure (5-b)-(5-f), for each case, the reservoir 
boundary was changed, but the distances from the injected to the producing wells were kept constant.  
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Figure 5 – Meshes with many levels of orthogonality. 
 

Figure (6) shows many results obtained with simulations. Each plot contains curves generated using five and nine 
points schemes for both grids (24x6 and 48x20 volumes). On left column, the maximum time step used was 50 days, 
while on right one, 100 days. In all figures, the variables of vertical axis were evaluated from beginning till the end of 
simulation (7500 days). The meaning of each of these variables will be described next. 

Figures (6-a) and (6-b) illustrate the number of time steps used with the maximum time step of 50 and 100 days, 
respectively. A greater quantity of increments means that the average time step used was small. From these figures, it 
can be noticed that the reduced Jacobian matrix (five-points) presents a great variation when angles equal to 60º or 
smaller were used. For small mesh angles, great variations occurred on mass fractions or pressures, that kept the 
average time step less than it was observed on orthogonal grid (θ = 90º) or when the full Jacobian matrix (nine-points 
scheme) was used. It is also worth noticing that the maximum number of time steps increased when was used a more 
refined mesh.  

The behavior of the number of time steps used was approximately linear for the full Jacobian matrix, but it was 
non-linear when it was used matrix including only direct neighboring volumes. The increase of the number of time steps 
with the number of volumes on the mesh can be explained by the increase of the mass fractions and pressure changes by 
time step. Finally, it can be mentioned that the number of time steps wasn’t sensible to the grid orthogonality when 
using nine-points scheme. Five-points scheme required many time steps for skewed grids. Some tests couldn’t be 
performed for determined grid angles, as seen on Figs. (6-a) and (6-b). 

Figures (6-c) and (6-d) show the total number of necessary iterations to Newton’s method convergence on each 
time step. As bigger the iterations number, greater will be computer costs to simulate. Note that, for both grids utilized, 
the two schemes presented the same efficiency only for 90º inclination mesh. In all other geometries, as skew angle 
increases, five-points scheme demand more Newton’s method iterations. For full Jacobian matrix, the iterations number 
has small sensibility with growing mesh inclination and time step, for each skew angle. 

Figures (6-e) and (6-f) present all solver iterations. Analyzing these figures, the number of solver iterations was not 
dependent on mesh inclination for full Jacobian matrix. It can be mentioned that, in the present work, the diagonal block 
as pre-conditioner matrix, which doesn’t consider the complete structure of the Jacobian matrix was used. This pre-
conditioner isn’t extremely efficient such as an ILU pre-conditioner, according to (Marcondes et all, 1995 and Maliska 
et all, 1998), but it has been robust in all mesh inclinations analyzed. As for five-spot configuration, the iterations 
number varied with the growing of mesh angle. 

Figures (6-g) and (6-h) show necessary time for composition of the Jacobian matrix and calculation of the residual 
functions. Note that, as greater the grid inclination, more time was wasted five-points scheme. As for full Jacobian 
matrix, this time haven’t changed with variations on grid inclination. This fact could be explained with the increasing 
number of iterations of Newton’s method with the grid angle to this matrix configuration, Figures (6-c) and (6-d). All 
simulations were made using a Silicon Graphics workstation - model Onyx 2. 

Figures (6-i) and (6-j) exhibit the time consumed for solver to achieve the linear system solution. As commented in 
Figures (6-e) and (6-f), the solver iterations kept constant with the complete Jacobian matrix for all grid angles, then the 
solver time must maintain the same behavior. As for five-points scheme, the growth in the iterations number, as a 
function of mesh angle, doesn’t increase necessarily the CPU time during simulation. This occurs due to operations 
done by BICGSTAB, proposed by Van Der Vorst (1992), such as matrix-vector product that require high computational 
cost. As greater the matrix structure, more expensive will be the computational process to the matrix-vector products. 
Comparing the number of solver iterations in Figure (6-c) for 60º skewed mesh (48x20), it can be seen that, using the 



 

 

incomplete Jacobian matrix, approximately 5 times more iterations were needed. However, time wasted by solver is 
approximately the same for both schemes. 
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Figure 6 – Simulation results obtained with five-points and nine-points scheme. 
 



 

 

 

Figures (6-k) and (6-l) illustrate average t∆  used in the simulation. The smaller this value, the greater will be the 
total simulation time. Note that full Jacobian matrix presented a linear behavior, with high values of average t∆ , as for 
incomplete matrix this value became lower for higher skew angles. Note that these curves have a similar behavior with 
those shown on Figures (6-a) and (6-b). This can be easily explained: as smaller the time steps during simulation, more 
of them will be needed to get total time. 

To compare the results obtained with both schemes, Figs. 7 and 8 show water cut curves on producing wells 1 and 2 
for grid with 24x6 and 48x20 control-volumes and 90º and 45º inclination with time step of 50 days.  From this figures, 
it is possible to notice that results achieved with five-points and nine-points schemes are very similar, with small 
differences, only when it was used 45º inclination mesh. It is also possible to observe the grid orientation effects 
analyzing and comparing the time when water cut starts to increase. 
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(a) Producing well 1 (non-aligned) 
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(b) Producing well 2 (aligned) 
 
Figure 7 – Water cut on 90º inclination grid, t∆ =50 days. 
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(a) Producing well 1 (non-aligned) 
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(b) Producing well 2 (aligned) 
 
Figure 8 – Water cut on 45º inclination grid, t∆ =50 days. 
 
5. Conclusions 

 
The efficiency of the five-points and nine-points schemes was tested in meshes with many levels of orthogonality. 

It was observed that it is necessary take into account the cross terms during the construction of the Jacobian matrix for 
meshes with high levels of non-orthogonality. Although this fact may contribute to increase CPU time (in each solver 
iteration), there is a substantial reduction on the number of Newton’s method iterations and in the number of time steps 
employed. The use of full Jacobian matrix allows using large time steps in all simulations. 
 



 

 

6. Acknowledgement 
 

The authors thank to Agência Nacional do Petróleo (ANP/PRH-25), Financiadora de Estudos e Projetos (FINEP), 
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Department of Mechanical 
Engineering at Federal University of Campina Grande by the financial support to this research. 
 
7. References 
 
Coutinho, B. G., 2002, “Numerical Solution for Problems of Petroleum Reservoirs Using Generalized Coordinates”, 

Msc Dissertation, Federal University of Campina Grande, Brazil. (In Portuguese) 
Cunha, A. R., 1996, “A Metodology to Three Dimensional Numerical Simulation of Petroleum Reservoirs Using Black-

Oil Model and Mass Fraction Formulation”, Msc Dissertation, Federal University of Santa Catarina, Brazil. (In 
Portuguese) 

Cunha, A. R., Maliska, C. R., Silva, A. F. C. e Livramento, M. A., 1994, “Two-Dimensional Two-Phase Petroleum 
Reservoir Simulation Using Boundary-Fitted Grids”, RBCM, Vol. XVI, no. 4, pp. 423-429.  

Czesnat, A. O., Maliska, C. R., Silva, A. F. C., Lucianetti, R. M., 1998, “Grid Effects on petroleum reservoir simulation 
using boundary-fitted generalized coordinates”, VII ENCIT, Rio de Janeiro, Brazil. (In Portuguese) 

Hegre, T. M., Dalen V. And Henriquez, A., 1986, “Generalized Transmissibilities For Distorted Grids in Reservoir 
Simulation”, SPE 15622, October. 

Hirasaki, G. J. e O’Dell, P. M., 1970, “Representation of Reservoir Geometry for Numerical Simulation”, SPEJ. 
Marcondes, F., 1996, “Numerical Simulation Using Implicit-Adaptative Mehotds and Voronoi Meshs in Problems of 

Petroleum Reservoirs.” Dr Thesis, Departament of Mechanical Engineering, Federal University of Santa Catarina, 
Brazil. (In Portuguese) 

Maliska, C. R., 1995, “Computational Heat Transfer and Fluid Mechanics”, LTC, Rio de Janeiro, Brazil. (In 
Portuguese) 

Prais, F. e Campagnolo, E. A., 1991, “Multiphase Flow Modeling in Reservoir Simulation”. Anais XI COBEM, São 
Paulo, SP. 

Todd, M. R., O´Dell, P. M. E Hirasaki, G. T., 1972, “Methods for Increasing Accuracy in Numerical Reservoir 
Simulators”, SPEJ. 

Van Der Vorst, H. A., 1992, “BI-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of 
Nonsymmetric Linear Systems. SIAM J. SCI. STAT. COMPUT., 13(2):631-644. 

 
8. Copyright Notice 

 
The author is the only responsible for the printed material included in his paper. 
 




