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Abstract. A  finite element model based on a Petrov Galerkin formulation in space and time, is proposed to simulate  the 
hydrodynamics of  ocean circulation.  The ocean model is a two dimensional gravity reduced layer model, that has an active layer 
overlaying a deep inert layer where the pressure gradient is set to zero. The Petrov-Galerkin formulation considered here, use 
stabilising operators to improve the classical Galerkin approaches. Numerical experiments in a schematised ocean are performed. 
The response of the coastal ocean forced by non-uniform wind fields shows typical wind-driven circulation features such as 
upwelling and  hydrodynamic gyres. 
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1. Introduction 
 

Most of the main features of  the coastal ocean circulation problems are concerned with the hydrodynamics effects 
induced by wind fields.  Coastline configuration, bottom topography and non uniform wind field forcing are important 
for the transient and meander-like dynamics in coastal seas associated with the presence of cool surface temperatures in 
form of plumes and intrusion of warm oceanic waters. There are numerous papers about coastal circulation in coastal 
ocean using analytical and numerical approaches. But features as the upwelling, downwelling, coastal jets and mixing 
are poorly resolved by numerical models due many problems associated to the parameterisations and strong variability 
of physical processes, the delimitation of the computational domain and the resolution of the models. The circulation 
near the coastal boundaries is highly variable in space and time.  In the nature the coastline irregularities and the spatial 
variation of the wind stress field lead to a three-dimensional circulation. Winds over coastal regions are generally 
upcoast or downcoast exhibiting spatial variability with characteristic scales smaller than the synoptic scale of 
atmospheric pressure patterns (Enriquez and Friehe, 1995).  Non uniform wind stress fields cause water convergence 
and divergence, leading to the Ekman pumping. 

The numerical models are of value for conceptual studies under idealized considerations, but success in using 
numerical models for simulation of time-dependent w ind-driven real coastal flows has been rather limited. Some 
efforts toward the development of modelling capability for coastal flow fields were published since the 90’s using finite 
difference methods (e.g. Allen et al. ,1995; Federiuk and Allen 1995; Allen and Newberger, 1996; Wang 1997; 
Weisberg et al.  2000; Middleton et al. 1998; Weisberg et al.  2000; Carbonel 1998, 2002).  

Finite element methods in hydrodynamic problems were mostly applied to the shallow water problems since the 
70’s (e.g. Grotkop, 1973; Sundermann, 1977; Taylor and Davies, 1975). But the models  based on classical Galerkin 
formulations have shown some misbehaviours in time-dependent propagation problems. It is only possible to obtain 
numerical schemes that retain the high accuracy of the element-based spatial discretization for small values of the 
time step ∆t. For quite modest values of ∆t, the accuracy and phase-propagation properties of the Galerkin 
formulation are lost and the stability range is reduced in comparison with finite difference schemes ( Donea and 
Quartapelle, 1992).  

These disadvantages have motivated in the last years, the development of alternatively finite element 
formulations such as Taylor-Galerkin, least-squares Galerkin  and Petrov-Galerkin methods to improve the time-
accuracy approximations of evolution problems, particularly for advection-dominated problems.  

Finite element formulations based on the SUPG and similar operators proposed initially for  advection-difusion and 
compressible flow problems (Brooks and Hughes, 1982; Hughes and Tezduyar, 1984; Johnson 1987; Hughes and 
Mallet, 1986; Hughes, 1987; Shakib, 1988; Galeão and Do Carmo, 1988; Almeida and Galeão, 1996) are well known 
and valid alternatively. Also, for shallow water application problems some progress were reported (Bova and 
Carey,1995; Saleri, 1995; Carbonel, Galeão and Loula, 1995; Ribeiro, Galeão and Landau, 1996). 

In this paper a finite element model based on a space-time Petrov-Galerkin formulation is proposed to numerically 
describe the hydrodynamics of  a baroclinic coastal ocean forced by non uniform wind fields in the southern 
hemisphere. 
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2. The Ocean Model 
 

The vertical structure is very simple considering only one dynamic upper layer of density ρu(x1,x2,t) with thickness 
h and an inert lower layer ρl(x1,x2,t). The vertically integrated conservation equations eliminating the fast barotropic 
mode of the two layer system  could be written in the following form: 
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The entrainment we is different from zero when h ≤  He , where He is the entrainment depth. In the present paper, 

we use the formulation  proposed by McCreary and Kundu (1988) in the numerical  experiments.                                                           
The flux components are represented by Ui = uih , and  ui  is the velocity components in the  upper layer. The 

entrainment velocity  is we, and h  is the upper  layer  thickness. The wind stress components are represented by  τi . The 
parameter r is the Rayleigh friction coefficient representing the sum of all dissipative losses, and f is the Coriolis 
parameter. The parameters ρu , ρl , ρair are the densities in  the upper layer, lower layer and air respectively. The 
parameters µ=ρu/ρl, σ = 1 - µ   are density ratios. The  wind stress field represented by τ1(t) and τ2(t) are evaluated by  
τi = cw ρairWi W , where Wi are the wind velocity components.  

To solve the equations (1)  and (2), the following boundary conditions are considered : 
  0== vu                                                     

at the closed boundaries.  For the initial conditions, an appropriate initial state is necessary to be assumed in the 
domain Ω  and at the boundary  Γ :    
         u = uo, v=vo,,   h= ho          at            t = 0                             
where uo  and ho represent the initial velocity component and elevation respectively. 
 
3. Finite Element Method 
 

To present the finite element methods, it is advantageous to rewrite the governing equations (1) and (2) for the 
baroclinic two-dimensional problem in function of the variables u, v,. Here u, v are  the velocity components d in a x1,x2 

coordinate system respectively, and d = 2c  and  c= hgσ  is the baroclinic celerity . The equation system reads 
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The equation system (4)-(5) written  in matrix form reads 
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3.1 Petrov-Galerkin formulations 
 

We  now construct now  space-time Petrov-Galerkin finite element models for the above problem. To this end we 
introduce a space-time finite  element partition    πh , ∆t , in which the time interval is partitioned into subintervals 

 
In =  tn+1 - tn =  ∆t         ,              tn∈  (0,T]                                                                                                         (8)  
 

where tn  ,  tn+1  belong to an ordered partition of time levels 0 = t0 < ....tn< tn+1....< tF = T an the space domain Ω is 
partitioned in N sub-domains Ωe  with boundary Γe.  The space-time integration domain is the slab  nn IS ×Ω=  with 

boundary nen I×Γ=Γ    such that the slab is composed by N elements  S In
e

e n= ×Ω  . 

Let h
nP  the finite element space of piecewise polynomial in space and time on the slab Sn. Defining 
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We say that the general space-time Petrov-Galerkin approximate solution for the baroclinic problem (6) is the vector Vh 
∈  U n

h , which satisfies               
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is the residual vector associated with (6) and     
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is a space-time operator. The first integral appearing in Eq. (10) is the space-time Galerkin residual. The second integral 

represents the added Petrov-Galerkin contribution, in which Ψe   contains the stabilizing parameters (Hughes and 
Mallet, 1986). The third integral is a jumping term which enforces weakly the initial condition in Sn . A  diagonal 

matrix IγΨ e =   is adopted, where γ  is the intrinsic time  scale free parameter. Using these assumptions, Eq. (10) can 
be rewritten as       
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is the Petrov-Galerkin weighting function. 
 
3. 2 Space-time Petrov-Galerkin formulation (STPG). 
 

The space time Petrov-Galerkin method (STPG) is applied to a baroclinic ocean circulation problem in this paper. 
Linear interpolation in time will be considered combined with linear interpolations in space. In this case, in the Eq. 10, 
for each time step, the initial condition is strongly enforced as the last computed solution at the end of the previous 
time-step. As a result the jumping term disappear and the STPG formulation reads   
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4. Numerical experiments 

 
The experiments evaluates the solution using a idealised representation of a non uniform wind field constant in 

time. Non uniform wind fields are described by the composition  of patches of the form 
)x,(xψWW 211011 = , )x,(xψWW 212022 = ,                                  

where ψ1 1 2( , )x x ,ψ2 1 2( , )x x are the two-dimensional structures of the patches. 
The basic parameter values used in  the  experiments  are  the following: The  fluid  in  the  layers is  initially   at  

rest.  The Coriolis parameter  is taken  as     f=  1.21 .10-4  sec-1. The wind  flows to the south and the maximal velocity 
components are fixed equal to W01 = 0 m/s, W02 = - 15 m/s .   The global   friction coefficient is fixed at r=1.2 10-6  sec-1  
and  the time step  is defined as  ∆t=21600sec. The value of   cw = 2.5 10-3  is adopted .  The densities of the upper and 
lower layer are ρu=1023 kg m-3 and ρl=1024 kg m-3. The parameter γ is chosen equal to ∆t/8 . The rectangular ocean is  
800 km x 1600 km and is presented in Figure 1. The initial upper layer thickness is 50 m and the characteristic speed of 
the system is c = 0.7ms-1. The computational domain is a rectangular coastal ocean of 800km wide (west-east direction) 
and 1600k length (north-south direction). The domain is composed by 6400 triangular linear elements (Figure 1). The 
solutions will be obtained for wind patch applied in the central part of the coastal west boundary. The model is 
integrated from a state of rest (no motion) for a period of 5 days. 

 
 

Figure 1. Spatial finite element grid of a schematised ocean of  800 km x 1600 km.  



 
 
4.1 Coastal circulation driven by  non uniform wind fields 
 
4.1.1 Case 1. Southward wind 

 
The coastal ocean is forced by a southward wind field. The wind field have a wide of 200km and extend southward 

along the coast 800km. The Figure 2 illustrates the response of the non-linear model to the non-uniform wind forcing, 
showing the velocity and the upper layer thickness  fields at day 5. The response is characterised by a wind driven flow 
that  decreases the upper layer thickness along a band in the west side coastline generating an upwelling band. The 
upper layer thickness decreases up to 7.8m. In the offshore side an area of  larger thickness occur indicating a 
convergence zone. The velocity field show a strong flow divergence in the upwelling zone with velocities up to 45cms-1 
near the coast diminishing in offshore direction. To determine the influence of the free parameter in the solution , we 
repeated the calculation using a larger free parameter (γ=∆t/4). The Figure 3 shows the upper layer thickness solution at 
day 5. There are a notable differences between the solutions. The thickness is significantly larger compared to the 
previous case. The upper layer thickness decreases only up to 15m.  In this run the maximum velocity was  36 cms-1. 

 

 
 
Figure 2. Upper layer thickness field (left panel) and velocity field (right panel) after 5 days in response to the 
southward wind patch. The free parameter is equal to ∆t/8. The contour interval is 5m. The shallow thickness are 
located along the coast indicating upwelling, whereas the deeper thickness area is located offshore. The flow field 
shows a geostrophic component due Ekman pumping near the coast, decreasing offshore. The maximum velocity is 
45cms-1. 
 
4.1.2 Case 2 Onshore winds 
 

Strong onshore winds appears in the nature in different occasions due to atmospheric events, for example cold 
fronts.  In this experiment, the coastal ocean is forced by a wind jet with a wide of 240km, extend eastward 400km. The 
wind patch is applied in the central part of the west coastline. The maximum wind velocity is 15ms-1. Figure 4 shows 
the response at day 5 to the onshore wind forcing. Some properties of the resulting fields are the following.  A current   
is directed onshore with a deflection to the south. This onshore drift forces a weak coastal upwelling in the northern  
side, thereby decreasing the thickness of the upper layer and generating a cell of shallower upper layer thickness. In the 
southern side, a convergence cell, where the upper layer thickness reaches the maximum thickness of 79 m due a strong 
convergence of the flows.  The solution shows the initial generation of gyres. 
 



 
Figure 3. Upper layer thickness field after 5 days in response to the southward wind patch, when the free parameter is 
increased to ∆t/4. The contour intervals are 5m. Similarly to the Figure 2, a divergence band is generated along the west 
boundary and a convergence cell if formed in the offshore side.  
 

 
                 
Figure 4.  Upper layer thickness field (left panel) and velocity field (right panel) after 5 days in response to the onshore 
wind patch. The contour intervals are 5m. The solution shows two cells. One cell with centre at the coast and the 
another cell in the northern side. The maximal thickness of 79m is located in the coastal cell, whereas the minimum 
thickness of 37m is located in the northern cell. The  maximum velocity is 12cms-1 

 
5. Summary and conclusions 
 

A  finite element model based on a Petrov Galerkin formulation in space and time, is proposed to describe the 
hydrodynamics of  a coastal ocean with a simple vertical stratification.  The ocean model is a two dimensional gravity 
reduced layer model, that has an active layer overlaying a deep inert layer where the pressure gradient is set to zero. The 
Petrov-Galerkin formulation considered here, use stabilising operators to improve the classical Galerkin approaches. A 
constant free parameter is considered in the experiment. Numerical experiments are performed considering a 
schematised ocean. The coastal ocean is forced by non-uniform wind fields. When a southward wind flows along the 
west boundary coast of the domain, the solution shows upwelling along the coast. A consequence of the divergence of 



the flows near the coastal boundary. When a westward wind flows in onshore direction, an onshore current results and 
gyres are generated. 
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