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Abstract. The hydrodynamic analysis for non-Newtonian flow inside straight ducts with elliptical cross-section was performed in
this work for low Reynolds number. Power law fluids were considered since the most known non-Newtonian ones falls within this
model. Simplified hypotheses for the fluid flow were established by adopting an adequate coordinate system, allowing to obtain a
close form solution for the momentum equation. The flow field and physical parameter of interest such as average velocity and
Fanning friction factor were then determined and presented as function of the behavior index and elliptical tube aspect ratio.
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1. Introduction

Situations that involve processing non-Newtonian fluids characterize research field that has many applications
mainly in chemical, pharmaceutical, food processing and petrochemical industries. Thus, rheological research that deals
with the relation between shear stress and gradient of the velocity field are of fundamental importance for fluid
characterization and its flow behavior. However, to obtain the solution for momentum and energy equations it is
necessary to get several physical parameters of interest including those ones related to the design of thermo-hydraulics
equipment processing fluid of such nature. In this way, the research concerned to the internal flow of non-Newtonian
fluids has many technological applications. Along last decades, several efforts have been developed in this research
field, among several we can cite Hartnett and Kostic (1989), and the works of Richardson (1979), Cho and Hartnett
(1982), Cotta and Özisik (1986), Pinho and Whitelaw (1990), Billingham and Ferguson (1993), Quaresma and Macêdo
(1998). It is worth noticing that the most of that work deal with the flow between parallel plates, or ducts with circular
or square cross-section. Few works are dedicated to study the flow inside ducts with more complex cross-section,
among some we cite the works of Etemad, Mujundur and Nassef (1996), Wachs, Clermont and Normandin (1999), and
Chaves et al. (2001). Thus, giving continuity to this research field, this work deals with the hydrodynamic analysis
involved in the flow at low Reynolds number of power law fluids inside straight ducts with elliptical cross-section. Due
to flow characteristics, mentioned above, it is hypothesized that secondary flow is negligible, Tanner (2000), and that
using an adequate non-orthogonal coordinate system it was possible to impose simplifying conditions in the whole flow
as well to obtain a closed form solution for the velocity field. Parameters such as average velocity and Fanning friction
factor were obtained as a function of the behavior index the cross-section aspect ratio.

2 Analysis

Non-Newtonian power law fluids present the following relation between the shear stress and the deformation rate:
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where n is the behavior index of the flow,  K  is the consistency index and η  is an auxiliary coordinate axis orthogonal
to the flow plane. That plane is a surface generated by the equation constantyxw =),( . Equation (1) can be written
as follows:
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where aµ  is called apparent viscosity. For pseudoplastic, 1n < , the apparent viscosity decreases with the increase of
the shear stress. For dilatant fluids, 1n > , apparent viscosity increases as the shear stress increases.

To determine the velocity profile for the power law fluid flow inside straight ducts with elliptical cross-section it is
assumed that the flow is laminar and hydrodynamically developed. To establish the correspondent momentum equation
consider the following coordinate system:

)ucos(vx =  ,                                                                                                                                                     (3a)

)(ρ usinvy asp=  ,                                                                                                                                                (3b)

αβρ =asp  ,     }αβ{ <                                                                                                                          (3c)

where the ratio between the elliptical semi-axis, αβ ,  defines the aspect ratio,  aspρ  of the elliptical duct cross-section.

When the aspect ratio 1ρ =asp , the coordinate system transformation given by Equation (3a-c) generates the

cylindrical coordinate system. In the general case, when the aspect ratio 1ρ <asp , the coordinate system )v,u(  is not
orthogonal, and the curves generated for constantv =  looks like similar ellipsis, concentric at ),( 00  as shown in
Figure 1.

Figure 1.  Non-orthogonal coordinate system ),( vu .

Metric coefficients )v,u(uh  and )v,u(vh , and the unitary base vectors ue  and ve  for the new coordinate
system are given by
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Due to the geometrical characteristics of ellipsis cross-section it is assumed that fluid velocity changes with the u
axis is negligible (Ahmeda, Normandin and Clermont, 1995). Therefore, )v(ww = . Defining an axis η  orthogonal
to the curve )v(ww =  and pointing towards the wall of the duct, then the constitutive equation for the shear stress,
Equation (1), can be written as
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As the coordinate system )v,u(  is non-orthogonal, the component orthogonal to the fluid flow plane does not

coincide with the unitary base vector ve . Thus, a differential ηd  must be determined not forgetting the

non-orthogonality of the coordinate system. In order to do so, a generic vector element rd  is projected into a unitary

base vector ηe  orthogonal do fluid flow plane. By doing so, we have
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where  ϕ  is the angle between the unitary base vectors  ue  and  ve .  As  ηee ⊥u , the differential ηd  is then
determined and given by
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Therefore, an equation for the shear stress in the new coordinate system is written as
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Pressure forces and shear stress forces acting on an elliptical ring element (shown in Figure 2) with thickness ηd
and length zd , can be formulated as follow

Figure 2. – Visualization of elliptical and axial differential elements having areas  dAS  and dASup
in order to determine pressure and shear stress forces.
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Substituting the expression for )(ϕsin , into the metric coefficients uh  and vh , and into the shear stress equation

τ , the net result for the pressure forces acting on elliptical ring element is

zdvdud
v

dz
dPzFdzzFd vu

vu

asp
PP ]

ρ
[])()([

2

0
∫−=−+
π

hh
hh

,                                                               (13a)

zd
zd

dPv)z(F)zdz(Fd aspPP ][ρπ2][ −=−+ ,                                                                           (13b)

and for the shear stress forces,
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From the equilibrium between the viscous and pressure forces, we have
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By doing some changes in the above equation and also considering that the maximum velocity occurs at the
centerline of the flow, we obtain the following relation for the flow field inside the duct elliptical cross-section
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The average velocity is obtained as follows
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Thus, the velocity distribution can also be written in terms of the average velocity, yielding
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3. Friction coefficient

Fanning friction coefficient is defined as
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The average shear stress at duct wall m,pτ , appearing in the definition of the Fanning friction coefficient,
equation above, is defined and determined by
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From the results obtained for the metric coefficient uh  and from the velocity profile )v(w , Equations (5a and

17a), the Fanning friction factor,  f, is then obtained,
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with ),(I aspρn  given by Equation (15).

The above equation is written again, now introducing the Reynolds number, Re, and the hydraulic diameter, Dh,
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where the corresponding hydraulic diameter, Dh, and the Generalized Reynolds number (Skelland, 1967), Re, is given
by
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When 1ρ =asp , the factor π2ρn =),(I asp . Therefore, for circular ducts we have 16=Ref ,
independently of the behavior index, n.

4. Results and remarks

To determine the Fanning friction coefficient, the integral for the factor ),(I aspρn , given by Equation (15), was
calculated by using Gauss quadrature method. The product  f Re  was determined through Equation (23) for various
ellipsis aspect ratio (ρasp = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1) and for some behavior index (n = 0.1, 0.2, 0.3,
0.5, 0.7, 1, 2, 3, 4 and 5). Results obtained for the product  f Re  are presented numerically in Table (1) and are
visualized graphically on Fig. (3). It can be figure out that the friction factor for pseudoplastic fluids (n < 1) changes
little with the aspect ratio. For dilatant fluids (n > 1) the friction factor exhibits a strong dependency to the ellipsis
aspect ratio when it tends toward zero ( 0ρ →asp ). In such cases, the apparent viscosity of dilatant fluids increases
significantly, due to the higher fluid velocity gradients near the wall.

In order to validate the results, values in the literature were found for the particular case of unitary the behavior
index, n = 1 (Shah and London, 1978) and it can be observed in Table 2 that there is an excellent agreement with the
results presented here. It is interesting to notice that for the particular case of unitary aspect ratio, 1ρ =asp , the
Equation (19) gives the same solution for the flow in circular tubes, Skelland (1967)
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where R is the circular radius. In Figures 4 to 6 present graphically the velocity profiles for fluid flow with behavior
index, n = 0.1, n = 1 and n = 5, respectively, inside ducts with aspect ratio, 5.0ρ =asp .
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Figure 3 – Fanning friction factor  fRe  as function of
the aspect ratio, ρasp, and behavior index, n.

Figure 4 – Velocity profile for flow of pseudoplastic
fluid with behavior index, n = 0.1, inside a
duct with aspect ratio, ρasp = 0.5.

Figure 5 - Velocity profile for flow of Newtonian
fluid with behavior index, n = 1, inside a
duct with aspect ratio, ρasp = 0.5.

Figure 6 - Velocity profile for flow of dilatant fluid
with behavior index, n = 5, inside a duct with
aspect ratio, ρasp = 0.5.

5.  Final remarks

A closed form solution for the flow of non-Newtonian power law fluids inside straight ducts with elliptical
cross-section was obtained in this work. The hydrodynamic parameters for the developed flow were determined. A
model was established in which the planes of constant velocities in the flow approximate to the boundary of a family of
similar ellipsis concentric to the duct. In this way, a new non-orthogonal coordinate system ),( vu  was proposed, that is
able to generate elliptical curves when the variable v is fixed. In this new system of coordinates the fluid flow velocity
can expressed as function of only one independent variable, )v(VV = , simplifying substantially the formulae of the
problem.

Through the viscous and pressure forces equilibrium was determined the velocity flowfield and hydrodynamic
parameters such as the average flow velocity and the Fanning friction factor were determined through the viscous and
pressure forces equilibrium, allowing the analysis of the flow of pseudoplastic and dilatant non-Newtonian fluids as a
function of the behavior index and the aspect ratio.
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Table 1 - Parameter  f Re  as function of aspect ratio, aspρ , and behavior index, n.

       n
   aspρ

0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0

0.999 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000
0.90 16.0012 16.0027 16.0043 16.0083 16.0132 16.0221 16.0663 16.1327 16.3320
0.80 16.0054 16.0118 16.0191 16.0368 16.0583 16.0979 16.2933 16.5867 17.4734
0.75 16.0089 16.0194 16.0315 16.0605 16.0959 16.1610 16.4817 16.9635 18.4268
0.70 16.0135 16.0294 16.0478 16.0918 16.1454 16.2439 16.7287 17.4575 19.6851
2 / 3 16.0173 16.0376 16.0611 16.1173 16.1857 16.3113 16.9293 17.8586 20.7138
0.60 16.0267 16.0582 16.0943 16.1808 16.2861 16.4789 17.4258 18.8515 23.2868
0.50 16.0464 16.1009 16.1634 16.3125 16.4932 16.8233 18.4368 20.8730 28.6427
0.40 16.0741 16.1607 16.2598 16.4949 16.7785 17.2941 19.7981 23.5938 36.0969
1 / 3 16.0976 16.2114 16.3411 16.6475 17.0155 17.6815 20.8991 25.7924 42.3226
0.30 16.1110 16.2401 16.3869 16.7321 17.1477 17.8960 21.5005 26.9925 45.7961
0.25 16.1330 16.2872 16.4620 16.8721 17.3611 18.2400 22.4514 28.8879 51.3872
0.20 16.1573 16.3386 16.5435 17.0216 17.5885 18.6024 23.4337 30.8424 57.2851
1 / 6 16.1745 16.3748 16.6003 17.1246 17.7439 18.8473 24.0845 32.1344 61.2545
1 / 7 16.1871 16.4011 16.6414 17.1985 17.8544 19.0199 24.5357 33.0282 64.0319
1 / 8 16.1967 16.4209 16.6722 17.2532 17.9358 19.1458 24.8608 33.6712 66.0450
1 / 9 16.2043 16.4362 16.6958 17.2950 17.9974 19.2407 25.1029 34.1491 67.5489
0.10 16.2103 16.4484 16.7144 17.3276 18.0453 19.3139 25.2881 34.5140 68.7018

1 / 16 16.2307 16.4877 16.7736 17.4291 18.1923 19.5358 25.8381 35.5944 72.1326
0.05 16.2374 16.4997 16.7913 17.4585 18.2342 19.5977 25.9880 35.8873 73.0664

0.001 16.2570 16.5319 16.8362 17.5294 18.3321 19.7391 26.3184 36.5279 75.1068

Table 2 – Fanning friction factor comparison for Newtonian fluid,  f Re.

aspρ 0.999 0.90 0.80 0.75 0.70 2 / 3 0.60 0.50 0.40

Ref 16.0000 16.0221 16.0979 16.1610 16.2439 16.3113 16.4789 16.8233 17.2941

Ref (*) 16.000 16.022 16.098 16.161 16.244 16.311 16.479 16.823 17.294

Table 2 (continuation).

aspρ 1 / 3 0.30 0.25 0.20 1 / 6 1 / 8 0.10 0.05 0.001

Ref 17.6815 17.8960 18.2400 18.6024 18.8473 19.1458 19.3139 19.5977 19.7391

Ref  (*) 17.681 17.896 18.240 18.602 18.847 19.146 19.314 19.598 19.739

(*) Results from Shah and London (1978).
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