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Abstract. The development of the Composite Element Method (CEM), which combines the Finite Element Method (FEM) approach 
and analytical solutions obtained from the Classical Theory (CT), is a novel technique to solve free vibration problems. Some of the 
elements proposed and modelled have shown that the free vibration problem of prismatic bars and Timoshenko’s beam could be 
solved in a more efficient and accurate way using CEM. However, certain elements are not capable of solving free vibration plate, 
mainly with those that are considered thin. In this paper a new element of CEM using the MITC (mixed interpolation of tensorial 
components) formulation from a 4-node plate element has been proposed. The displacement field is expanded, merging the nodal 
values from FEM with the analytical functions of the classical solutions. The classical solution functions must satisfy certain specific 
boundary conditions in such a way that they do not change the nodal values of FEM. These functions must also be the solutions of 
the frequency equation. The objective of the present work is to apply the CEM on the thin and thick plate model. Examples are 
included to illustrate the efficiency and accuracy of the method and the results are compared between usual MITC element and 
CEM element. The locking effect related to the thin plates is also discussed. 
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1. Introduction  
 

To understand the structural behavior very often it is required to find their natural frequency and modal vibration. 
In this way, several numerical techniques have been developed, being the Finite Element Method one of the most 
successful. 

Aiming at improving the accuracy of the results for modal vibration definition, using the same finite element mesh, 
the Composite Element Method (CEM) has been proposed by Zeng (1998a, 1998b, 1998c). The CEM does not change 
the stiffness and mass matrices because the analytical functions increase them without the need matricial rearranging. 
Then the CEM can be considerate a hierarchical method. 

Carvalho et all (2002), using this technique, solved the free vibration problem applied to thick plate problem based 
on Reissner’s model. It has been noticed that the results depend on the performance of the finite element adopted. 

Depending on the finite element used to solve the free vibration problem applied to thin plate, the phenomenon 
called transverse shear locking effect appears. To deal with these cases, several papers have been proposed (e.g. Bathe 
and Dvorkin, 1985; Zienkiewics, 1971; Zienkiewics and Taylor, 1977). 

Hereafter, to examine the CEM applied to solve free vibration of thin plates, it will be developed a 4-node plate 
element using the MITC (mixed interpolation of tensorial components) formulation. Aiming at better results, two types 
of refinements can be employed: h and c. The first one corresponds to the increase of the number of elements in the 
finite element mesh. The other one is related to the increment of the number of analytical functions on the CEM 
displacement field. 
 
2. The Composite Element Method 
 

A linear combination of the FEM shape functions and the analytical solutions from the Classical Theory (CT) have 
determined the displacement field of the CEM. Then,  

 
)y,x(u)y,x(u)y,x(u CTFEM +=  (1)

 
where uFEM is the usual displacement field of the FEM, which is based on a local coordinate system, and uCT is the 
corresponding displacement field from the CT. 

The FEM displacement field can be approximated by interpolation of the nodal values, using H as the shape 
function vector and q the nodal displacement vector. Considering (x,y) as coordinates of a generic point inside the 
element; results: 
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( ) ( ) qy,xHy,xu T
FEM =  (2)

 
Similarly, considering Ø as the set of analytical functions, and c the composite functions coordinate vector, which is 

relative to the c-degree of freedom (dof), the CT displacement field is given by: 
 

( ) ( ) cy,xØy,xuCT
Τ=  (3)

 
Replacing Eq. (2) and (3) into Eq. (1), results in: 
 

cØqH)y,x(u T Τ+=  (4)
 
The next step is to develop the interpolation functions matrices and the nodal values vectors for the finite element 

plate model and for the CT. 
 

3. The classical theory of free vibration plate 
 

In order to obtain the c-displacement field of CEM, the free vibration plate theory has to be observed. Considering 
w as the plate’s transverse displacement, q=q(x,y,t) the surface loads, D the flexural stiffness and ρ the specific weight, 
then, by Hamilton’s Principle, the differential equation of movement is given by: 

 

qwhwD 4 =+∇
••

ρ  
(5)

 
For the case of vibration problems, the surface loads are null and the Eq. (5) becomes: 

 

0whwD 4 =+∇
••

ρ  
(6)

 
To solve the previous equation, it is convenient to separate the variables, resulting: 
 

)t(T)y,x(W)t,y,x(w =  (7)
 
where, 
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In this case, ω2 is the link for the two variables (W and T). Physically, ω is also known as the natural frequency. The 

problem is completely solved when the function W(x,y) is determined. One way to solve this differential equation 
system is using the infinity series approximation (Szilard, 1974), considering wmn as coefficients to be determined, and 
θ(x,y), as any functions that obey boundary conditions: 
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(9)

 
From Eq. (9), it is possible to write q(x,y) as the product of two other functions, which both depend on one 

argument. Then,  
 

)y(Y)x(X nmmn =φ  (10)
 
The functions Xm(x) and Yn(y) are linearly independent and each set of functions must satisfy the boundary 

conditions in its own direction. It is possible to use the same type of functions in both directions. The problem is solved 
by two sets of linearly independent equations and, for each direction, the classical beam solution can be applied. For the 
particular case of the X-direction, the classical beam solution is: 
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where, m is the mass per length unit, E is the Young’s Modulus, and I is the flexural inertia moment. 

Supposing a harmonic solution, it is possible to write: 
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where, λm is the shape parameter and l is the span length, giving: 
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The general solution of Eq. (12) is: 
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The constants C1, C2, C3 e C4 are obtained from setting the boundary conditions. The parameter λm is the root of the 

characteristic equation. As in the case of the beam element, considering the clamped-clamped boundary conditions, it 
can be shown that: 
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Replacing the boundary conditions (15) into Eq. (14), a set of homogeneous equations can be derived: 
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The frequency equation is obtained by imposing the system determinant of Eq. (16) equal to zero.  
 

01cosh.cosf mm =−= λλ  (17)
 
Table 1 shows the roots of the frequency equation. The parameter λm is the m-th eigenvalue, while the 

corresponding vibration modes are obtained from Eqs. (16) and (17). 
 

Table 1. The frequency equation roots. 
 

mλ  VALUE 

λ1 4,7300 
λ2 7,8532 
λ3 10,9956 
λ4 14,1372 
λ5 17,2788 
λ6 20,4204 
λ7 23,5619 
λ8 26,7035 
λ9 29,8451 

 
 



  

 
The Xm solution is:  
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Applying the same procedure for the Y-direction, it follows that, for a square plate, the result is: 
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Here, the sub-indices m and n are relative to the X or Y directions and l is the span of the plate. For indices above to 

nine, the λm values can be obtained by: 
 

( ) 21m2m πλ +=  (20)
 

4. The finite element approximation 
 

The finite element plate model is based on the nodal interpolation functions. In this case, the plate variables can be 
determined by the following expressions: 
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where w(x,y), θx and θy are de nodal degrees of freedom relative to the generic coordinate system. Figure (1) contains 
the representation of nodal value of displacement of a four node plate element considering constant thickness and its 
medium plane. 
 

 
 
Figure 1. Nodal displacement for four node plate element. 

 
As in the usual FEM methodology, the following stiffness matrix is obtained: 
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where, [Bf] and [Bc] are the interpolation matrices for bending and shear; [Df] is the constitutive matrix for the flexural 
behavior of the plate; [Dc] is the constitutive matrix for shear and k is the shear correction factor. 

The [Bc] matrix, which is associated to shear deformations, and considering the x, y coordinates can be written by: 
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Now, considering the MITC4 element that has been proposed by Bathe and Dvorkin (1985), the isoparametric 

coordinate system could be equaled to the ξ, η, resulting: 
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where w and θ  are the transverse nodal displacement and rotation, respectively. The numeric-indices are related to the 
nodal number of the element as indicated in Fig. (1). 

The γxz and γyz shear strains can be written by 
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where α and β are the angles between the ξ and x axes and η and x axes, respectively. More details can be found in 
Bathe and Dvorkin (1985). 

Figure (2) contains the representation of the isoparametric element and presents the global and local coordinate 
system. 

 

 
 

Figure 2. Representation of the isoparametric element. 
 

The mass matrix [M] is evaluated by: 
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5. The CT approximation 
 

Defining αx and αy as rotation section and c as the transverse displacement associated to the CT, it is possible to 
write: 
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CT flexural deformations are determined in a similar way. The strain deformation relations are: 
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and also, the shear deformations are: 
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The matrix of the shape functions for the CT is associated to the c-dof. This matrix is: 
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The c-dof vector for the CT is: 
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The upper-indices of the rotation variable θ are related to the c-shape functions. As in the FEM, the nodal 

displacements may be expressed by the CT nodal values. Using the strain-displacement relations, the matrices [BMC]f 
and [BMC]c, (respectively the flexural and the shear transformation matrices for the CT) can be obtained. Applying 
them in the Virtual Work Principle, results: 
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6. The CEM approximation 
 

The previous formulation can be arranged in a common matrix: 
 
[ ] [ ] [ ]Φ+= HW  (33)

 
where [H] is the associated matrix of the FEM shape functions, and [ Φ ] is associated to the CT. 

In this way, the transformation matrix is: 
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The mass matrix [M] can be evaluated by: 
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7. Examples 
 

Based on the CEM theory shown above, a Finite Element Code has been developed. The software can solve the free 
vibration problem using the FEM solution and the CEM from one up to four functions of CT, named by CEM-1F to 
CEM-4F, as described. For the computation of the element stiffness matrix, 2x2 Gaussian integration is used to FEM 
terms and 4x4 Gaussian integration is used to CT terms. The results shown in these exemples are restricted to regular 
geometries. Other examples applied to irregular geometries can be found at Carvalho (2002). 

 
7.1. Free vibration of a simple supported square plate with thickness change 
 

In this example, a simple supported plate is analyzed using the enhanced element with thickness change. The results 
are presented in a dimensionless form, λ, whose expression is: 
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where, ω is the natural frequency; ρ is the volumetric density; h is the thickness; b is the span of the plate and D is the 
flexural rigidity. Assuming the Poisson’s ratio ν=0.3, the Young’s Modulus is 2.1 1011 MPa and the volumetric density 
is 7800 kg/m3. The results for the first frequency are shown in Fig. (3), which contrasts the relative difference from the 
CEM solutions and FEM solution. The FEM solution has been determined by using four nodes quadrangular elements 
MITC, according Bathe and Dvorkin (1985). There are two points showing the exact solution to the relation 
span/thickness (b/h) equal 10 and 100. It can be noted that the CEM solution tend to be more accurate than FEM 
solution. Both cases were obtained using 10x10 mesh. The exact solution to b/h=10 has been determined by Srinivas et 
all (1970) and to b/h=100 can be found in Leissa (1973). 

 

 
Figure 3. Results for the first frequency for FEM and CEM. 

 
7.2. Free vibration of a simple supported square plate with mesh refinement 
 

In this case, it is possible to compare the results using refinement h and c. The ratio b/h is equal to 10 and the 
Poisson’s ratio ν=0.3, the Young’s Modulus is 2.1 1011 MPa and the volumetric density is 7800 kg/m3. 

To check the convergence of the CEM, the number of elements has been increased. Meshes with (3x3), (4x4), until 
(10x10) elements have been considered. Table 2 shows the results to the third frequency. The exact solution for the 
third dimensionless frequency is 70.089. This value has been obtained from Srinivas et all (1970). 

 



  

 
Table 2. Third frequency dimensionless obtained from FEM and CEM 
 

 
MESH 

3X3 
MESH 

4X4 
MESH 

5X5 
MESH 

6X6 
MESH 

7X7 
MESH 

8X8 
MESH 

9X9 
MESH 
10X10 

FEM 109.14 89.25 81.54 77.69 75.49 74.10 73.17 72.51 
CEM-1F 106.32 87.48 80.33 76.92 74.94 73.66 72.83 72.24 
CEM-2F 105.92 87.15 80.26 76.89 74.91 73.65 72.82 72.23 
CEM-3F 105.25 86.76 80.18 76.85 74.86 73.63 72.81 72.22 
CEM-4F 105.12 86.74 80.17 76.84 74.86 73.63 72.81 72.22 

 
8. Conclusions 

 
The new formulation of the CEM using the MITC is an effective numerical method to solve the free vibration 

problem of thin plates without presenting transverse shear locking. A computational program to the four node plate 
element using one to four enrichment functions of CT has been developed. 

Although the CEM solutions are always better than those from the FEM (because the finite element space solution 
is enriched by the analytical shape functions), their computational costs are increased. This should be compensated by 
some advantages. An advantage of CEM is to produce better results to high frequencies with coarse meshes. Another 
one is the hierarchical construction of the stiffness and mass matrices. 

The CEM results depend on the performance of the finite element adopted. The knowledge about the behaviour of 
the global matrices of CEM should also be further studied and using the CEM to determine local modal of vibration. 
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