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Abstract. Several analytical models consider the dislocations that form the plastic zone around the crack tip as a continuous
distribution of infinitesimal dislocations at static equilibrium due to a friction stress. Other models consider the dynamic evolution
of the plastic zone with time and the description is based on computer simulations where the plastic zone is consider as formed by
discrete dislocations not in equilibrium whose dynamics is described by a power relation between velocity, total stress and
temperature. In this work, computer simulations are performed considering a infinite crack loaded under a fixed loading rate
(Hirsch et al., 1989). The dislocations are emitted by a Frank-Read source positioned at a fixed distance ahead of the crack tip and
in a plane that contains the crack front. From the simulations, the plastic zone size, the dislocation free zone, the total number and
the distribution of dislocations, the elastic stress and the effetive stress intensity factor are calculated. The results for mode I loading
are compared with the static analytic model of (Chen et al, 1999). For mode III, the simulations are compared with the models of
(Chang et al., 1981) and (Majumdar et al., 1983).
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1. Introduction

The majority of crystalline solids fail by cleavage at low temperatures and by plastic deformation at high
temperatures. In between these two regimes, a transition from brittle to ductile behavior is observed as the temperature
increases. The transition is characterized by a gradual increase of fracture toughness over a region of 100 K or more.
The bcc metals, some intermetallic alloys, MgO and other materials exhibit such transition (Roberts, 1997). In Si and
sapphire single crystals, the transition is sharp, occurring over a temperature range less then 10 K (1). Several
experiments of pre-cracked samples of several materials as Ge (Serbena et al., 1994), TiAl (Booth et al., 1997), NiAl
(Serbena, 1995) and W (Gumbsch et al., 1998) showed the fracture toughness increases gradually with temperature and
the brittle-ductile transition temperature depends on the applied strain rate. This increase is related with a higher
dislocation mobility, resulting an increase in the plastic zone around the crack with the subsequent rise in crack tip
shielding.

In this work, computer simulations of dislocations generated by a Frank-Read source positioned in front of the
crack tip under different loading modes are described. The main purpose is the comparison of the dynamic model
according to Hirsch, Roberts & Samuels – HRS (Hirsch et al., 1989) with analytical models where the plastic zone is at
equilibrium under the action of a friction stress according to the models of Chen & Kitaoka – CK (Chen et al., 1999,
Chang & Ohr – CO (Chang et al., 1981) and  Majumdar & Burns - MB (Majumdar et al., 1983).

2. The numerical simulations of the Hirsch et al model for differents modes

The plastic zone is assumed to be located in a single slip plane which intercepts the whole crack front as shown in
figure 1. The angle between the slip plane and the crack plane is θ. For mode I, θ is 90º and for modes II and III, θ is
equal to 0º. A Frank-Read source is positioned along the slip plane at a fixed distance xc equals to 10b ahead of the
crack front for the simulations, where b is the dislocation Burgers vector.

The source emits a single edge (modes I and II) or a screw (mode III) dislocation every time the stress at the source
is positive. The shear stress xyσ at an edge dislocation positioned at a distance yi emitted in mode I is (Hirsch et al.,

1989):
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where yj is the position of the jth edge dislocation, KI is the mode I applied stress intensity factor, µ is shear modulus

equals to 50 GPa, b is the Burgers vector equals to 4 
0
A  and ν is the Poisson coefficient assumed to be 0.3. For mode II,

the shear stress xyσ  at any edge dislocation is given by (Hirsch et al., 1989):
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where xj is the position of the jth dislocation, KII is the mode II applied stress intensity factor. For mode III, the stress
xzσ acting at a screw dislocation is (Hirsch et al., 1989):
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where KIII is the mode III applied stress intensity factor.
Simulations were also performed according to the analytical model for a mode I crack as proposed by Chen &

Kitaoka (Chen et al., 1999). In their model, the dislocation interaction term is simpler than the one used by the HRS
model shown in equation (1). In the CK model, the shear stress xyσ at any edge dislocation positioned at yi is:

( ) ( ) ( ) ( )∑
≠ −−

+
−

−=
ij jiii

I
xy yy

b
y

b

y

K 1
12144 2

1 νπ
µ

νπ
µ

π
σ .  (4)

In the equations (1-4), the first term refers to the crack tip stress field under the remote stress, the second is the
image term and the third is the dislocation-dislocation interaction term in the presence of the crack. The dislocation
mobility is described by an empirical relation in an Arrhenius form of ( )kT

UAV m −= expσ , where m is the stress

exponent equals to 1, A is a constant equals to 1.05 x 10-5 m.s-1.Pa-1, T is the temperature assumed to be 473 K, U is the
activation energy for dislocation mobility equals to 1 eV, σ is the total stress and k is the Boltzmann constant.
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Figure 1. Plastic zones for modes I and III.

The simulations were performed at a constant applied stress intensity factor rate for the corresponding mode. The

value chosen was =
.

K 1,0 x 10-3 MPa.m1/2.s-1, which is the applied K&used in experiments reported in Serbena et al.
(1994) . At each time interval δt used in the program, the stress at the source is examined to verify if a new dislocation
can be nucleated. If the stress is positive, a dislocation is generated at the source, the stress at each dislocation is

calculated and they move at a distance equal to δt iv . The applied stress intensity factor is increased by δt
.

K at each
cycle and the effective stress intensity factor Ke at the crack tip is calculated as (Hirsch et al., 1989):

Se KKK += ,  (5)

where KS is the shielding effect due to crack-dislocation interaction. As the time and the applied K increase with time,
Ke also increases, due to the increasing number of dislocations emitted by the source and the increase in plastic zone
size. The stress intensity at fracture KF can be calculated if the criterion for fracture is taken as when Ke = KIC.



The time interval δt was calculated at each cycle in a manner that the dislocations in the array would move at most
a 1/3rd of the distance to the adjacent´s dislocation old position. Simulations were also performed for smaller fractions
of the distance (smaller δt) and the obtained results were the same.

As the computer time increases as n!, an algorithm which “bundled” the dislocations into superdislocations was
used to reduce computer time requirements (Hirsch et al., 1989). The dislocations were grouped into superdislocations
with Burgers vector Nb, where N is the number of “bundled” dislocations. The arrangement is such the distribution of
(super)dislocations in the plastic zone is 1.1.1.3.3.3.9.9.9.27.27.27... ....27.27.27.9.9.9.3.3.3.1.1.1 in respect to their
Burgers vectors.

3. Description of the static analytical models

3.1. Static analytic model for mode I by Chen & Kitaoka

The problem of a infinite crack loaded under mode I, with a simplified description of the dislocation-dislocation
interaction term around the crack tip and with the inclusion of a DFZ was treated by Chen & Kitaoka (Chen et al., 1999)
and Chen & Takezono (Chen et al., 1995). The dislocations are emitted on an inclined plane and form a plastic zone of
size a, leaving behind a dislocation free-zone of size e. The dislocations are at rest under the action of a friction stress.
Once dislocations are emitted, they interact elastically with the crack, reducing the local effective stress intensity factor
at the crack tip. The problem is treated under plane strain condition, and the equilibrium equation for each dislocation is
composed of 4 terms: the crack tip stress field, the dislocation-dislocation interaction, the image stress and the friction
stress. The distribution is assumed to be made of dislocations with infinitesimal Burgers vector and is assumed to be
continuous. The distribution f(x) in the region e < x < a satisfy the following equation of equilibrium (Chen et al., 1999):
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where fσ  is the friction stress, r and θ  are the polar coordinates. In this model, the image term is neglected. Equation

(6) is a singular integral equation, where )(rf  is limited between e and a. The solution is (Chen et al., 1999):
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DFZ is (Chen et al., 1999):
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This expression establishes a relation between the local effective stress intensity factor Ke, the plastic zone size a
and the DFZ size e. The total number of dislocations is given by integration of the distribution function in the interval e
< x < a and the result is (Chen et al., 1999):
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If it is assumed the plastic zone size is much bigger than the DFZ, 1≈k , 
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3.2. Static analytic model for modes II and III by Chang & Ohr

Chang & Ohr (Chang et al., 1981) elaborated an analytical model for a mode III loaded crack under a remote
applied stress σa. Ahead of the crack, thee is a continuous distribution f(x) of screw dislocations under equilibrium of a
friction stress. If the crack is under mode II loading, edge dislocations are emitted and the mathematical formulation
differs by a constant factor.

The slip plane is assumed to be coplanar with the crack front. In this case, the following singular integral equation
must be solved (Chang et al., 1981):

0
)(

2
'

'

'

=+
−





++ ∫∫∫

−

−

−
a

a

e

c

c

e

a

dx
xx

xfb σ
π

µ ,  (13)

 for x < c and:

fa

a

e

c

c

e

a

dx
xx

xfb σσ
π

µ =+
−





++ ∫∫∫

−

−

−

'
'

' )(
2

,  (14)

for -a < x < -e and e< x < a and x´ is the variable of integration.
The equations (13) and (14) are solved by a method developed by Muskhelishvili (Muskhelishvili, 1953; Head et al,

1955) and the solution is (Chang et al., 1981):
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The effective stress intensity factor eK  in this model is (Chang et al., 1981):
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In the limit a >> e , the above expression is (Byrd et al., 1954):
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3.3. Static analytic model for mode III by Majumdar & Burns

Majumdar & Burns (Majumdar et al., 1983) treated the case of a crack under mode III loading. Screws dislocations
are emitted in a plane that contains the crack front. The plastic zone is considered as a continuous distribution of
dislocations and equilibrium under a friction stress. The condition for equilibrium is (Majumdar et al., 1983):
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where IIIK  is the applied stress intensity factor and `)(xf is the dislocations distribution. The left term refers to the
dislocation-dislocation interaction, the first right term is crack tip stress field and the second term is related to the
friction stress. The image term is neglected.

By using the method developed by Muskhelishvili (Muskhelishvili, 1953; Head et al, 1955), f(x) is (Majumdar et al.,
1983):
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The shielding SK of the crack is (Majumdar et al., 1983):
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In the limit a >> e (Byrd et al., 1954):
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4. Results

4.1. Comparison between numerical simulations and static analytical model by Chen & Kitaoka

Figures 2 (a) and (b) show the number of dislocations and the effective stress intensity factor as a function of the
stress along the plastic zone as predicted by the static analytical model of CK and as a function of the stress at the
leading dislocation of the array for numerical simulations also performed according to this model. In this case, the
simulations were performed for mode I loading in a similar manner as the numerical simulations for the HRS model
described in section (2) and using equation (4) for the total stress.

The e, a and σ  values generated by the simulation was substituted in equations (11) and (12) to obtain the curves of
the static analytical model for comparison. There is good agreement between the predictions of equations (11) and (4) in
figure 1 (a). In figure 2 (b), the static model predicts an increasing positive Ke, while the simulations predict negative
values. This behavior is due to the great number of dislocations emitted during the simulation, causing a considerable
shielding effect.

The comparison between the results predicted by the models HRS and CK obtained by numerical simulations are
shown in figures 3. The DFZ predicted by the CK model is smaller than those predicted by the HRS model (figure 3
(a)), which causes a higher shielding as shown in figure 3 (b). As shown in figures 3 (c), (d) and (e), the stress at the
leading dislocation, the number of dislocations and the plastic zone size predicted by the CK model are considerably
higher than those predicted by the HRS model. The results show the crack is strongly shielded in the CK model due to a
higher number of dislocations, a larger plastic zone and a smaller DFZ. The shape of the dislocation distribution is
similar for both models as shown in figure 3 (f).
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Figure 2. (a) Variation of number of dislocations and (b) effective stress intensity factor as a function of the stress along
the plastic zone for the static analytical CK model and the stress at the leading dislocation of the array for
numerical simulations according also to this model.

4.2. Comparison between numerical simulations and static analytical models by Chang & Ohr and by Majumdar
& Burns

Numerical simulations according to the HRS model were performed and the results compared with the models CO
and MB for mode III. The dislocation distribution of the HRS model agrees with that calculated by the MB model as
shown in figure 4.  The CO model predicts a lower distribution, indicating a lower number of dislocations in the plastic
zone.  This is also consistent when the effective stress intensity factor is calculated. Numerical simulations predicts a
higher shielding than those calculated by the static models as shown in figure 5 (a). The least effective shielding is that
predicted by the CO model. One reason for discrepancies between the simulations and the analytical models is that in
all analytical models, the friction stress is assumed to be constant along the plastic zone. As can be seen in figure 5 (b),
this is not the case when the total stress is calculated in the simulations. Although the stress can be considered fairly
constant, it varies along the plastic zone.

5. Conclusions

In mode I, the number of dislocations in the plastic zone calculated by numerical simulations agrees with the results
predicted by the model CK, but not the effective stress intensity factor. The simplified term for the dislocation-
dislocation interaction term used in the CK model is not a good approximation, since the results predicted are not in
accordance with those predicted by numerical simulations using the HRS model. This later model uses the correct term
for dislocation-dislocation interaction in the presence of the crack.

In mode III loading, the dislocation distribution calculated by the model MB agrees with that calculated according to
the HRS model. The shielding predicted by the HRS model differs from those calculated by the static models because
the assumption of a constant friction stress along the plastic zone assumed in the analytical models does not hold for the
numerical simulations.
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Figure 3. (a) DFZ, (b) effective stress intensity factor, (c) stress at the leading dislocation, (d) number of dislocations,
(e) plastic zone size as a function of the applied K and (f) variation of dislocation density along the shear plane
for an applied K of 2,019 MPa.m1/2.



1.0x10-5 1.5x10-5 2.0x10-5 2.5x10-5 3.0x10-5

0

1

2

3

4

f(
x)

 / 
(4

.σ
 / 

π .
µ .

b)

x

                              Mode III
 Numerical simulation - HRS - equation (3)
 Static analytical model - MB - equation (19)
 Static analytical model - CO - equation (15)

Figure 4. Normalized dislocation distributions along the plastic zone as calculated by the models HRS, MB and CO.

0 2x10-5 4x10-5 6x10-5 8x10-5

-5x109

0

5x109

1x1010

1x109 2x109 3x109 4x109 5x109

0.0

3.0x106

6.0x106

Numerical simulation - HRS
 total stress
 applied stress
 interaction stress

σ 
( 

P
a 

)

x ( m )

(b)

(a)

Mode III
 m = 1

 Numerical simulation - HRS
 Static analytical model - CO
 Static analytical model - MB

K
e (

 P
a.

m
-1

/2
 )

σ
f
 ( Pa )

Figure 5. (a) Variation of Ke along the plastic zone as predicted by the models HRS, CO and MB and (b) stress
components and total stress according to the HRS model along the plastic zone.



6. Acknowledgements

A. Mikowski  is grateful for CAPES for financial support.

7. References

Booth, A.S., Roberts, S.G., 1997, “ The brittle-ductile transition in γ-TiAl single crystals”, Acta materialia, Vol. 45, pp.
1017-1023.

Byrd, P. F.; Friedman, M. D., 1954, “Handbook of Elliptic Integrals for Engineers and Physicists”, Ed. Springer-Verlag,
Berlin, p. 1-281.

Chang, S. J.; Ohr, S. M., 1981, “Dislocation-free zone model of fracture”, Journal Applied Physics, Vol. 52, pp. 7174-
7181.

Chen, J., Kitaoka, S., 1999, “Distribution of dislocation at a mode I crack tip and their shielding effect”, International
Journal of Fracture, Vol.100, pp. 307-320.

Chen, J.; Takezono, S., 1995, “The dislocation-free zone at a mode I crack tip”, Engineering Fracture Mechanics, Vol.
50, pp. 165-173.

Gumbsch, P., Riedle, J., Hartmaier, A., Fischmeister, H. F., 1998, “ Controlling factors for the brittle-to-ductile
transition in tungsten sinle crystals”, Science, Vol. 282, pp. 1293-1295.

Head, A. K.; Louat, N., 1955, “The distribution of dislocations in linear arrays”, Aust. Journal of Physics, Vol. 8, pp. 1-
7.

Hirsch, P.B., Roberts, S.G., Samuels, J., 1989, “ The brittle-ductile transition in silicon. II Interpretation”, Proc. Royal
Society London A., Vol. 421, pp. 25-53.

Majumdar, B. S.; Burns, S. J., 1983, “A Griffith crack shielded by a dislocation pile-up”, International Journal of
Fracture, Vol. 21, pp. 229-240.

Muskhelishvili, N. I., 1953, “Singular Integral Equations”, Ed. P. Noordhoff, Groningen, pp. 251-253.
Roberts, S. G., 1997, “Modelling crack tip plastic zones and brittle-ductile transitions”, Materials Science and

Engineering A, Vol. 234, pp.52-58.
Serbena, F. C., 1995, “The Brittle-Ductile Transition of NiAl Single Crystals. London”, D. Phil. Thesis, University of

Oxford, Oxford, UK, 133 f.
Serbena, F.C., Roberts, S.G., 1994, “ The brittle-to-ductile transition in germanium”, Acta metallurgica., Vol. 42, pp.

2505-2510.




