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Abstract. A semi-analytic three-dimensional model was developed to calculate the elastic energy variation which appears as a result 
of the interaction of a dislocation loop within a monocrystalline material and a crack. Application was made to a FCC material 
where there exist a crack and one loop aiming (i) to establish the conditions for a loop nucleation to occur ahead of the crack front 
and (ii) to study the amplitude variations on the results produced by this interaction. Changes in crack propagation conditions 
(shielding and antishielding) due to the presence of the loop were determined based on the stress intensity factor calculations. An 
entirely three-dimensional formulation was used to account for the stored elastic energy variation due to the interaction. A 
computer program called DiFrac was setup based on the proposed formulation which simulates crack-dislocation loop interaction 
and to calculate the associated image-force. The computer program has also allowed determining nucleation conditions of a loop 
dislocation. 
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1. Introduction 
 

Even under the action of small forces, the presence of stress concentrators may induce the appearance of 
dislocations within the lattice of a crystalline material. It is, thus, natural to expect the presence of dislocations near a 
crack. It has been experimentally observed (George & Michot, 1993, George et al., 2001) that, for nearly perfect 
materials under critical temperatures, dislocation nucleation occurs right in front of a crack. In real cases, they assume 
the shape of a loop that is enlarged thanks to a competition between the work done by the applied external forces and 
the elastic energy stored in the region within the influence of the dislocation. The first is approximately proportional to 
the inside area of the loop, while the second can be regarded as proportional to the loop perimeter. The balanced energy 
variation leads to the maximum free energy of the crystal when the loop radius reaches a critical value. If this critical 
radius has its order of magnitude close to the one of the Burgers’ vector, emission occurs spontaneously for very small 
energy levels and the dislocation can be thermally activated. However, calculations made for the emission of a loop 
dislocation in an infinite medium of a perfect material, such as silicon, have shown very large values for both the 
critical radius and the energy barrier. This indicates silicon is intrinsically fragile, its rupture being possible only by 
cleavage, contradicting the experimental findings. Is there a condition for which a brittle to ductile (BTD) transition 
occurs in the material thus allowing it to develop loop dislocations and undergo a small plasticity, even being this 
material of an intrinsically fragile nature? How does the free surface of a crack interfere in the free energy of the crystal 
and reduce the energy barrier? 

These are questions that persist to remain unanswered when the three-dimensionality of the problem is considered. 
Rice & Thomson (1974) have made the first attempts to solve the issue, but, as noted by Schöeck (1991), apart from 
making a rather thorough investigation on the subject, the problem they treated fell back to two dimensions. Oliveira 
(1994) formulated the first three-dimensional equations that led to a semi-analytic determination of the stress intensity 
factors induced on the crack by the presence of a loop dislocation. The loop rested on a general plane and touched the 
edge of the crack in just one point. Based on the same formulation, Rangel et al. (2001) presented a broader solution 
scheme which took advantage of some characteristics of the problem which are inherited from the resulting shape of the 
stress field induced by the loop. This approach allowed a more rational calculation of the energy variation due to the 
proximity of the loop and the crack’s free surface (Rangel, 2002). 

While addressing the questions posed above, the results presented herein intend to contribute to the solution of the 
problem by: (i) showing the main procedural steps used by Rangel (2002) to calculate the free energy variation as a 
loop approaches the edge of a crack in any angle n an almost perfect crystal; (ii) analyzing the conditions for the 
nucleation of a loop in the region ahead of a crack; and (iii) evaluating the consequences of amplitude variations on the 
crack-loop dislocation interaction. 
 
2. The energy variation in the interaction of a crack and a loop dislocation 
 

Following Rangel (2002), the basic equations used to calculate the free energy variation in the interaction of a crack 
and a loop dislocation are presented with their solution. 
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2.1. The stress field and its shape 
 

Considering b the Burgers’ vector of a loop dislocation with radius ρ’ = N | b | = N b, where N ∈ ø, the stress at a 
point M, distant R from the loop’s center C, in a material with shear stress µ, can be found in Hirth & Lothe (1968) as 
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Rangel et al. (2002) rewrote the stress components σ"ij in their nondimensional form as 
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Figure 1. Nondimensional coordinates of point M over the crack plane, where one iso-p curve can be seen. 
 

where ξi = xi / ρ’, P = R / ρ’. Each component in Eq. (2) can be integrated by using elliptic functions of first and second 
kinds, K (p) and E (p), respectively (Abramowitz & Stegun, 1965). The parameter p is calculated as a function of the 
relative position of point M with respect to C [see Fig. (1)]. It also plays a very strong role in the shape of the stress 
distribution, suggesting a mesh can be created based on the variation of p, which is done in Fig. (2). In fact, this strong 
dependency of stresses and p has suggested the use of the iso-p curves shown in Fig. (2) to generate the mesh, thus 
leading to a much improved computational solution of the problem. A thorough explanation of the procedures can be 
found in Rangel et al. (2001) and Rangel (2002). 
 
2.2. The stress intensity factors – KI, KII and KIII 
 

The three stress intensity factors can be calculated when the loop touches the edge of the crack by 
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Figure 2. The element mesh based on parameter p. 
 
or, approximately, by 
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G1(Ξ,Ζ), G2(Ξ,Ζ) and G3(Ξ,Ζ) being weighting functions expressed in terms of nondimensional coordinates, as put by 
Rangel (2002). Also, the stress components needed in Eq. (4), τ, are only those related to the plane of the crack and 
represented in the coordinates defining this plane, namely τΗΗ, τΗΞ and τΗΖ. 

The mesh seen in Fig. (2) was obtained as a function of the stress distribution, since the iso-p curves are actually 
related to stresses and vice-versa. As a result of this dependency, for each specific problem the mesh is automatically 
generated. 

When compared, both Eqs. (3) and (4) reveal the main advantage of considering this approach, since the integration 
limits in the later do not go beyond the meshed area. This is a very important feature which is achieved by this 
formulation, since the integrals in Eq. (4) will later be performed several times, at least once for each point along the 
edge of the crack, in order to bring up detailed stress intensity factor variations. 
 
2.3. Changes in the stress intensity factors as the loop approaches de edge of the crak 
 

The free surface of the crack offers an opportunity of energy relaxation to the loop. As the loop is considered at 
points approaching that free surface its stress field plays an increasing role in the interaction, meaning the stress 
intensity factors induced by the loop also increase. However, it is very hard to determine at which point along this 
“path” to the free surface this role becomes significant enough to interfere in the behavior of the crack. In other words, 
where around the crack does the loop begin to affect the crack behavior? It seems to be more reasonable, from the 
computational point of view, to consider the loop as “walking” this virtual path in the opposite sense, which is starting 
at a point where it touches the crack’s edge and then getting apart from it up to a point where it no longer has an 
appreciable influence on the crack. This is seen in Fig. (3). 

Equations were developed by Rangel (2002) to calculate the stress intensity factor variations due to this “getting 
away path” of the loop. The greatest difficulty in the task was to keep the original mesh untouched and use it to 
calculate the new stress intensity factor. A hint of this technique is shown in Fig. (4), where the virtual displacement δ is 
decomposed in direction Ξ and Ζ as 

 
δ = δΞ gΞ + δΖ gΖ .  (7) 



 
This procedure has a small drawback for it changes the crack edge from a straight line into a zig-zag, which is still 

acceptable, provided the size of the elements remains within a reasonable range. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Evolution of the region of influence of the loop where stresses are capable of affecting the crack behavior. 
One notes that only the part of that region overlapping the crack free surface is considered in the integration of 
the stress intensity factor equations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. The mesh for integrating the stress intensity factor equations: shaded elements are taken away from the region 

of integration. Stress intensity factors are then calculated for the resulting area (unshaded elements). 
 
2.4. The image force and its relation to the Irwin’s equation 
 

Once all stress intensity factors induced by the loop have been determined, Irwin’s equation can now be calculated. 
In three-dimensional problems, this is 
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where HI, HII and HIII are elastic constants in their nondimensional form, given in Tab. (1), Πp is the potential energy 
and A is the crack free surface. The image force can be obtained for each position of the loop along its virtual path 
towards the crack free surface by 
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E being the elastic energy due to the presence of the loop and r the coordinate measured along the smaller straight line 

lying in the loop plane and linking the loop center and the crack edge, seen in Fig. (5). 
 

Table 1. Nondimensional elastic constants HJ for the calculation of the image force. 
 

Opening mode 
State 

I II III 

Plane stress 2 / (1 – ν) 2 / (1 – ν) 2 

Plane deformation 2 (1 + ν) 2 (1 + ν) 2 (1 + ν)(1 – ν) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Forces acting on the loop and on the crack: f I – image force; G – extension force, respectively. 
 
When applying the second of Newton’s Laws to Eqs. (8) and (9), one is led to 
 
f I = – G  .   (10)  

 
2.5. The energy balance 
 

The relaxation energy corresponds to the reduction in the elastic energy stored by the presence of the loop. It is due 
to the proximity of the crack free surface. As the distance between loop and free surface diminishes, the energy 
relaxation becomes stronger, thus reducing the elastic energy of the loop. This energy variation is equivalent to the 
virtual work done by the image force through the virtual path of the loop, along ξ’ ≡ r, which can be expressed as 
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The total elastic energy due of the system is 
 
ET = E∞ – Er(r) ,   (12) 

 
for which E∞ is the elastic energy in an infinite medium and Er(r) the elastic energy due to the internal loading 

represented by the loop. The work done by the external loading can be approximated by 
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where η(χ) is a function of the crystal lattice that is approximated by a fifth order polynomial (Michot, 1982). Gibbs’ 
energy associated with the problem can be obtained through 

 
∆G = ET – WD = E ∞ – Ed – WD ,   (14) 

 
or, in nondimensional form, 

 
∆G / µ b3  =  E ∞ / µ b3  –  Ed / µ b3  –  WD / µ b3 .   (15) 

 
Figure (6) shows a qualitative plot of Gibbs’ energy for the interaction of a loop dislocation and a crack. As it was 

stated earlier, the energy barrier is quite high and the critical loop radius quite large for an almost perfect material such 
as silicon. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Gibbs’ free energy associated with a loop dislocation. One can see the energy barrier that must be surpassed in 
order to nucleate a loop with radius ρ’C. 

 
2.6. Results for silicon 

 
The procedure above was set up for a model based on silicon. Equations were solved for three lattice configurations 

as proposed by Michot (1982) under several relative positions of loop and crack. A computer program named DiFrac 
was conceived to be as flexible as possible, so all actual combinations of configuration, Burgers’ vector, loop radius and 
angle of emission can be used as input in order to be analyzed. Some of these combinations are shown here for 
illustrating its capabilities. 

Using configuration GAMMA (Rangel, 2002), for a loop radius ρ’ = 50 b, with angle of emission α = 0, results can 
be compared to experimental findings presented by Scandian et al. (1998) and Scandian (2000). Figure (7) shows the 
energy variation calculated for Burgers’ vectors b = [1 0 1] (-1 1 1) and b = [0 -1 1] (1 1 1). One sees that the second 
Burgers’vector stores more energy than the first one in this configuration. Since it demands less energy from externally 
applied loading in order to be activated, the second Burgers’ vector will always show up before the first one. This fact 
has been experimentally verified by Scandian (2000), even when all conditions favoring the appearance of the first 
vector were imposed. 

Keeping the same radius for the loop and taking, now, the BETA configuration, for b = [-1 -1 0] (-1 -1 1), the angle 
of emission (or angle of incidence) α is let to vary from –π/2 to +π/2. The change in the elastic energy for several 
positions of α is given in Fig. (8). 

 
2.7. Shielding and antishielding 

 
Let a body with a crack to be loaded by externally applied forces, leading to a state of stresses at a point around the 

crack defined by σA. Assuming a loop dislocation is emitted within the material on a generic plane close enough to the 
crack edge, so that it generates a stress state σd. Using the principle of superposition, σe = σA + σd is the total stress state 
at a point located in that region. The induced stress intensity factor can also be assumed as 
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Figure 7. Stored elastic energy for different points of the loop dislocation along direction ξ’. 
 
 
Ke = KA + Kd .   (16) 
 
The crack extension force given by Eq. (8) can be expressed as 
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By looking at Eq. (17) one can readily verify that the intensity and the sign of G will depend only on the sign of the 

product KA . Kd. Hence, if KA . Kd > 0, the crack extension force will be greater than the extension force caused by 
adding the two effects, i. e., G A + G d. On the other hand, if KA . Kd < 0, the extension force will be smaller than the sum 
of the effects. In the first case, there occurs a phenomenon called antishielding, indicating that crack propagation is 
favored. The second case is called shielding and the loop plays the role of an inhibitor of crack propagation.  

 
2.8. The energy barrier 

 
Rangel (2002), using the example shown in Fig. (9), calculated the Gibbs’ free energy through Eq. (15). The 

conclusion was that the term due to the loop, Ed / µ b3, is much smaller than the term E ∞ / µ b3, indicating the nearness 

of the crack free surface has negligible influence on the interaction. Experimentally, the temperature is held constant 
while external loading is applied very slowly. Loop dislocation emissions are identified to begin for KI { 0,25 KIC, 
where KIC { 1 MPa m1/2 for monocrystalline silicon (Michot, 1989). This leads to critical nondimensional nucleation 
energy ∆GC / µ b3 of, approximately, 4.000 (equivalent to 108.000 eV for ∆G C!), corresponding to a critical nucleation 

radius ρC’ = 3.000b, as shown in Fig. (9). 
 

2.9. Discussion of the results 
 
If a dislocation loop of radius ρ’ with Burgers’ vector b lying on a plane n is emitted following an orientation in the 

range – π/2 < α < +π/2 for the three accepted lattice configuration arrangements, the procedure presented above can: 
(a) determine the evolution of stress intensity factors induced by the presence of the loop on the edge of the 

crack; 
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Figure 8. Elastic energy variation for different emission angles α and for loops away from the crack edge. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Schematic plot where one can see the energy barrier when a 0,25 KIC external loading is applied to the body 
with a a crack and a loop nearby at a constant temperature. 

 
 

(b) determine the region of influence of the loop over the crack edge; 
(c) calculate an average value for the stress intensity factors, such as 
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where one can observe that <KJ> can: i) change its sign with the angle of emission; ii) proportionally 
decrease as the distance between the loop and the crack increases; and iii) decreases with the increase in the 
loop radius; 

(d) calculate the crack extension force and, consequently, the image force component in the direction of the 
crack propagation; 

(e) determine the same parameters for any relative position between loop and crack; 
(f) calculate the work done along a virtual path and the increase of the energy as the loop gets away from the 

crack. 
 

2.10. Conclusions 
 
The nondimensional formulation of the equations of a three-dimensional interaction between a loop dislocation and 

a crack has made possible the determination of the nucleation energy or loop dislocations near a crack tip. This has been 
done for an almost perfect material with a well defined lattice. It has been observed a strong dependency on the 
nucleation conditions. 

Carefully established integration schemes have led to quite accurate results, even when approximations are made in 
order to accelerate integration routines. The procedure can be extended to other types of crystal defects. 

The calculations of the energy barrier have shown that there cannot be any spontaneous nucleation of loops ahead 
of a perfect crack edge. Embrionary loops already within the material lattice and the stress field induced by the external 
loading determine the planes where dislocation loops will develop, as well as their slip planes. In configuration BETA, 
loop dislocations are responsible for shielding the crack-tip. 
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