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Abstract.This work presents numerical solutions for flow and heat transfer in square cavities partially obstructed with porous 
material. The microscopic flow and energy equations are integrated in a representative elementary volume in order to obtain a set 
of equations valid in both the clear flow region and in the porous matrix. A unique set of equations is discretized with the control 
volume method and solved with the SIMPLE algorithm. Enhancement of convective currents within the porous substrate is detected 
as the Rayleigh number Ra increases. Thin boundary layers along the cavity vertical walls and stratification of the thermal field are 
observed for Ra >109. Results further show that for high values of Ra the thickness of the porous layer becomes of a lesser 
importance. 
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1. Introduction  
 

The study of natural convection in composite enclosures having layers of distinct materials, have several 
applications of great engineering relevance. Insulating systems in engineering equipment often use layers of porous 
material with the aim of controlling heat transfer rates across heated surfaces. In addition, advanced nuclear reactor 
systems consisting of a reactor core embedded in a large coolant pool are considered to be inherently safe since the heat 
generated in the event of an accident if passively removed the action of gravity. In many of these systems, materials and 
components can be modeled as a porous structure in an enclosure subjected to natural convection currents. 

When treating turbulent flow in porous media, recent works in the literature propose a macroscopic treatment of the 
properties of interest, integrating these quantities in a representative elementary volume so that macroscopic equations 
for the flow arise [Anthohe & Lage (1997), Pedras & de Lemos (2001)]. With respect to cavity flows in clear and in 
porous media, subjected to a temperature gradient across the layer, the literature is vast and a great number of solutions 
can be found, so much for clear cavities de Vahl Davis (1983) as for porous enclosures Charrier-Mojtabi (1997). Also 
for this geometry, the work of Braga & de Lemos (2002a) presents results for laminar convection in square cavities 
heated on the sides. Later, Braga & de Lemos (2002b) extended their results to horizontal annuli. Turbulent flow in 
eccentric and concentric annuli was also investigated Braga & de Lemos (2002c). Also, a study on natural convection in 
cavities completely filled with porous material was presented in Braga & de Lemos (2002d). In this last work, the two 
geometries previously analyzed, namely square and annular region, were considered. More recently, Braga & de Lemos 
(2002e) presented results for laminar and turbulent flow in square cavity for clear and porous media. The modeling of 
the turbulent natural convection in porous enclosures is fully documented in de Lemos & Braga (2003). The turbulence 
model employed is the standard k-ε turbulence model with wall function. 
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Figure 1 Cases analyzed a) Cavity with 50% porous material; b) Cavity with 25% at porous material. 
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In all the results mentioned above, the considered cavity was either totally clear or totally filled with a porous 

substrate. In this work, the considered problem is shown schematically in Figure 1. Here, the situation considered treats 
two-dimensional flow of an incompressible fluid in a square cavity of height H and width L, partially filled with porous 
material with different thicknesses. Further, for the cavity of the illustration one considers constant temperatures on the 
left face, TH, and on the right, TC, being TH>TC. The other two walls are maintained insulated. 

In Magro & de Lemos (2002a) laminar flow and heat transfer in the cavity of the Figure 1 were investigated. In that 
work, the effect of the number of Rayleigh and the treatment of the interface, located at x=L/2, were the objective of the 
analysis. There, the interface treatment used was the one proposed in Ochoa-Tapia & Whitaker (1995). Later, in Magro 
& de Lemos (2002b) the previous investigation was complemented, taken then into account the effects of porosity and 
permeability of the porous region. In both works, the analysis was made for flow in laminar regime. Recently, Magro & 
de Lemos (2002b) and de Lemos & Magro (2003) considered turbulent flow in a cavity having 50% of its volume 
occupied by a porous material. 

The objective of this contribution is to extend former results in cavity considering now turbulent flow in the cavities 
of Figure 1, including now simulation of heat transfer across the enclosure when only 25% of the total space is occupied 
by the permeable medium. Nusselt numbers for the both cases shown in the figure are compared. 
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Figure 2 Computational grids; a) Grid for case a) in Figure 1, b) Grid for case b) in Figure 2. 
 
2.  Mathematical Model 
 

The mathematical model here employed has its origin in the works of Pedras & de Lemos (2001) for the 
hydrodynamic field and e Rocamora & de Lemos (2000) for the thermal field. The consideration of buoyancy forces 
was taken in the works of Braga & de Lemos (2002a-e) and the implementation of the jump condition at the interface 
was considered in Silva & de Lemos (2002) based on the theory proposed in Ochoa-Tapia & Whitaker (1995). 
Therefore, these equations will be here just reproduced and details about their derivations can be obtained in the 
mentioned works. These equations are: 
 
2.1 Macroscopic continuity equation: 

 
0=⋅∇ Du  (1) 

 
where, Du  is the average surface velocity (‘seepage’ or Darcy velocity). The equation (1) represents the macroscopic 
continuity equation for an incompressible fluid. 

 

2.2 Macroscopic momentum equation: 
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where the last two terms in equation (2), represent the Darcy-Forchheimer contribution. The symbol K is the porous 
medium permeability, cF is the form drag coefficient (Forchheimer coefficient), ip〉〈  is the intrinsic average pressure of  



 

 

the fluid, ρ is the fluid density, µ represents the fluid viscosity and φ is the porosity of the porous medium. The 
macroscopic Reynolds stress i〉′′〈− uuρφ  is given as, 
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where 
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is the macroscopic deformation tensor, 2iik 〉′⋅′〈=〉〈 uu  is the intrinsic turbulent kinetic energy, k, and 
φ

µ t , is the 
turbulent viscosity which is modeled in Pedras & de Lemos (2001) similarly to the case of clear flow, in the form, 
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Figure 3 Effect of Rayleigh number on streamlines, φ =0.8, grid 50x50: a) Ra=107, b) Ra=108, c) Ra=109. 



 

 

 

 Transport equations for ik〉〈  and its dissipations rate ( ) ρµε iTi 〉′∇′∇〈=〉〈 u:u  are proposed in Pedras & de Lemos 
(2001) as: 
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where c1, c2 , c3 and ck are model constants, D
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ik〉〈  due to gradients of Du , due to the action of the porous matrix and due to the buoyancy forces in the liquid phase, 
respectively. A proposal for this last term was made by de Lemos & Braga (2003) and can be written as, 
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where 

φ
ν t  expresses the macroscopic turbulent kinematic viscosity, ftt ρµν

φφ
= , βφ is a macroscopic thermal 

expansion coefficient and σT is a constant. 
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Figure 4 - Effect of Rayleigh number on temperature field, φ=0.8, grid= 50×50, a) Ra=107, b) Ra=108, c) Ra=109. 



 

 

 
 
2.3 Macroscopic energy equation: 

 
In a similar way, applying both time- and volume-average operators to the microscopic energy equation, for the 

fluid and for the porous phases, two equations appear. Assuming then the hypothesis of Local Thermal Equilibrium, 
which considers ii

s
i

f TTT 〉〈=〉〈=〉〈 , and adding up the two obtained equations, one has (see Braga & de Lemos 
(2002a-e) and de Lemos & Braga (2003) for details), 
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is the effective macroscopic conductivity tensor. 
 
 
 

 
At the interface, the conditions of continuity of velocity, pressure, turbulent kinetic energy k  and its dissipation rate ε , 
in addition to their respective diffusive fluxes, are given by, 
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Figure 5 Rayleigh number effect on velocity field, φ =0.8, 50x50 wall and interface refined grid. 
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The jump condition at the interface is given by, 
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 The non-slip condition for velocity is applied to all of the four walls. In this work, the Rayleigh number is 
calculated with the fluid phase properties and defined as ναβ TLgRa ∆= 3 , where g  is the gravity acceleration, β  is 
the fluid volumetric expansion coefficient, ν  is the fluid kinematic viscosity, α  is the thermal diffusivity and T∆ = TH 
- TC. 
 
3. Numerical Method 

 
 The equations above were discretized in the computational mesh shown in Figure 2. This mesh concentrates nodal 
points close to the four walls and around the interface. 
 The numerical method used in the resolution of the equations above was the Finite Volumes technique and the 
SIMPLE algorithm of Patankar (1980). The interface is positioned to coincide with the border between two control 
volumes, generating, in such a way, only volumes of the types 'totally porous' or 'totally clear'. The flow and energy 
equations are resolved then in the porous and clear domains, being respected the interface conditions mentioned earlier. 
 
4. Results and Discussion 
 

The geometry and computational grids used in this work are shown in Figure 1 and Figure 2, respectively. The 
analysis on this section will focus only on the effect of Rayleigh number on streamlines and on both velocity and 
temperature fields. Also, here only the cavity having 25% of porous material will be studied (Figure 1b) since case 
a) in Figure 1 has been the subject of other works [Magro & de Lemos (2002c), de Lemos & Magro (2003)]. 

Figure 3 shows the effect of Rayleigh number on the hydrodynamic field for both clean and porous media, with 
25% porous material. It can be observed that, with the increasing Rayleigh number, the flow penetrates the porous 
medium more intensively. For Ra> 108, it becomes clear the existence of a boundary layer both on right face (clear 
medium) and on the contact surface between of the porous medium and the left wall. For Ra=109, despite the center of 
the recirculation zone is still located within the unobstructed volume, there is a considerable convective flow through 
the porous matrix. It can be seen that, in this cavity, the flow behaves much like as in the case of a cavity filled with 
50% porous material, cases a) in Figure 1 (Magro & de Lemos (2002c), de Lemos & Magro (2003) ). 

The effect of Rayleigh number on temperature field is presented in Figure 4. It can be seen that the stratification on 
the temperature field, with the increasing of the Rayleigh number, also begins to appear inside the porous layer. For 
Ra=109, the temperature field shows a nearly fully stratified behavior and a thin boundary layer develops along the 
lateral walls. 

Figure 5 details the development of the observed boundary layer along the lateral surfaces. As already mentioned, 
with increase in Ra the convective flow penetrates more intensively on the porous substrate, returning down mostly 
along the right wall. It is interesting to observe a peak at the interface to Ra=107, most likely due to the relatively strong 
resistance to flow within the porous medium at this condition. For higher vales of Ra, however, the fluid processes more 
momentum being able to enter the porous structure and maintain the most of the flow within the boundary layers along 
the walls. 

The Nusselt number calculated by, 
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is taken along the wall were the higher temperature HT  prevails. The effect of Ra on the value of Nu is documented in 
Table 1. For both calculated porosities, there is an increase on Nu as Ra increases, reflecting the enhancement of the 



 

 

convective currents as Ra attains higher values. For a given Ra, the same effect seems to occur on Nu as the porosity φ 
increases. 
 

Table 1 – Nusselt number for vertical cavity with porous material, grid 50×50. 

φ  \ Ra 107 108 109 1010 

Cavity with 50% Porous Material (from Magro & de Lemos (2002c) and de Lemos & Magro (2003)) 
Grid refined close to the walls 

0.5 1.69 2.65 9.39 28.72 
0.8 4.39 13.18 30.52 67.05 

Grid refine on walls and around the interface 
0.8 4.37 13.15 30.46 67.0 

Cavity with 25% Porous Material 
Grid refine on walls and around the interface 

0.8 5.164 13.7 30.56  

 
The comparison between the wall-refined grid and the wall-and-interface-refine grid shows an agreement related to 

Nusselt number, indicating that for the conditions here analyzed the solution is nearly grid independent. Finally, 
comparing Nusselt numbers for 50% and 25% porous medium thicknesses, it can be seen that, for Ra=107, there is an 
increase on Nusselt number. However, for Ra=109, only a slight enhancement on Nusselt number is observed, 
indicating that the higher the Rayleigh number, the less important seems to be the size of the porous material. However, 
since calculations herein were performed for materials with certain thermal-physical properties, and considering further 
that the heat across the cavity propagates by the mechanisms of conduction and convection, the tendencies here 
observed might be not occurs if other values of the fluid and solid properties were employed. 
 
 
5. Concluding Remarks 
 

In this work, numerical results were presented for laminar and turbulent flows in hybrid domains with heat transfer, 
which involved an interface between the porous bed and the clear medium. The used numerical method made possible 
the simultaneous treatment of the porous matrix and of the unobstructed region as a single calculation domain, naturally 
considering the interface conditions between the two media. The Raleigh number was varied and the change in global 
heat transfer across the cavity was obtained. It was observed that an increase in Ra intensified convective currents inside 
of the porous material, leading to the situation of stratification of the temperatures field in the entire domain of 
calculation. The increment on the heat transferred was also observed with the increase of the porosity of the material. 
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