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Abstract. In this work a porous bed is modeled as an array of cylindrical rods with the purpose of modeling the interface between a 
porous medium and a clear flow domain. The flow properties for this geometry are investigated. The governing equations are 
numerically solved using the finite volume method in a generalized coordinate system. The algebraic equation system obtained is 
solved by the SIP method. For pressure-velocity coupling, the SIMPLE method is applied. Results for field velocity across the array 
of cylindrical rods and the influence of porosity and permeability are investigated. 
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1. Introduction 
 

The study of fluid flow in media that contain an interface between clear and porous media has several applications 
in many fields of industry and environment. Moreover, in many practical situations the flow occurs in domains 
composed by a clear (unobstructed) region and a porous medium, in addition to flow around a solid obstacle. This type 
of flow received considerable attention from researchers in the last decades. The importance of this theme can best be 
appreciated by noting several of their application areas. Atmospheric boundary layer over forests and dispersion of 
pollutants in the soil are some examples of applications. Accordingly, the development of a numerical tool able to treat 
all these regions in one computational domain is of advantage for engineering design. 

Beavers and Joseph (1967), were the first to study a boundary condition for a fluid flow in a region that contains an 
interface between a clear and porous medium. They developed an experiment and detected a non negligible velocity at 
the interface. 

Neale and Nader, (1974), proposed a continuity condition for the velocity at the interface by the introduction of the 
Brinkman term on the momentum equation for the porous region. 

Vafai and Thiyagaraja, (1987), made an analytical study for the fluid flow and heat transfer for three types of 
interface: a) interface between two layers of porous matrix; b) interface between a clear and porous medium; c) 
interface between a permeable and impermeable media. The continuity of the shear stress and the heat flux were 
accounted for in their study, with the employment of the Darcy Forchheimer-extended equation. Other analyses 
consider the same type of boundary conditions for fluid flow and heat transfer as in Vafai and Thiyagaraja, (1987), 
Poulikakos and Kazmierczak, (1987), Vafai and Kim, (1990b), Kim and Choi, (1996) and Ochoa-Tapia and Whitaker, 
(1997). 

Vafai and Kim, (1990a) presented an exact solution for fluid flow at the interface between a clear and a porous 
medium including the inertia term and the boundary effects. In the study therein, the shear stress in the fluid and porous 
medium are taken as equal at the interface. 

Ochoa-Tapia and Whitaker (1995a-b), proposed an interface condition where a jump in the shear stress at the 
interface region is assumed. In the study therein, the jump in the shear stress is inversely proportional to the medium 
permeability. They proposed a set of interface conditions that were used in Kuznetsov (1996, 1997, 1998a-b, 1999). 

Ochoa-Tapia and Whitaker, (1998), also presented a different shear stress jump boundary condition at the interface 
where the inertia effects are considered. 

Goyeau, Lhuillier and Gobin, (2002), presented a study on the momentum transport at the interface between a clear 
and porous medium using only one set of equations to describe the flow in the two media. They also used a model with 
two sets of equations (two domains), i.e., employing distinct equations to describe the clear and porous media. 
Homogeneous and non homogeneous porous regions were investigated using a shear stress jump boundary condition 
proposed by Ochoa-Tapia and Whitaker (1995a-b). For the homogeneous porous layer, both models are well adjusted. 
However, the model with only one set of equations using the non homogeneous porous medium show a better 
description of the momentum variation due to the heterogeneities near the interface. 

Rocamora and de Lemos, (2000b), and de Lemos and Pedras, (2000a-b, 2001) developed a macroscopic model of 
two equations where a constant is introduced in the turbulent kinetic energy equation. The value of this constant is 
obtained through numerical experimentation applied to a porous medium formed by cylindrical rods with a spatially 
periodic array. 

The development carried out at LCFT/ITA contemplates both a macroscopic model, through numerical treatment 
with one unique set of governing equations (de Lemos and Pedras, (2000a, 2001), Rocamora and de Lemos, (2000a-d) 
and a microscopic model, used in the calibration of the parameters of the macroscopic closure (Pedras and de Lemos, 
(2001a-d) ). 
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Recently, Silva and de Lemos (2001, 2002a-c, 2003), and de Lemos and Silva, (2002a-b) presented numerical 
solutions for laminar and turbulent flows in a channel partially filled with porous material taking account the shear 
stress jump at the interface (Ochoa-Tapia and Whitaker (1995a) ). 

Although the cited results show a macroscopic treatment of the flow at regions with interface between a clear and 
porous medium, till this moment, a detailed investigation of the fluid flow in such media is not common in the available 
literature. 

The objective of this work is to investigate the fluid flow in a porous matrix formed by cylindrical rods. 
 
2. Microscopic Model 
 
2.1 Geometry 

 
The flow under consideration is schematically shown in Figure 1 and consists in a channel filled with cylindrical 

rods. The fluid with constant property flows longitudinally from left to right permeating through the obstacles. 
Additionally, case of Figure 1 uses a wall condition to the north and south and spatial periodicity to the east and west. 
 
2.2 Governing equations 
 

The microscopic continuity equation is given by. 
 

0=⋅∇ u  (1) 
 

The microscopic Naviek-Stokes equation for an incompressible fluid with constant properties can be written as, 
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Figure 1: Geometry a), Grid computational b) 



 

 

2.3 Boundary Conditions 
 

Equations (1) and (2) are solved under the following boundary and interface conditions: 
 

00 ==yu  (3) 

 
where hf is the free flow depth, hp is the porous depth, H=hf+hp is the total depth, W is the length of the channel, µ  is 
the fluid dynamic viscosity and Dp is the solid particle diameter. 
 

0==Hyu  (4) 

 
3. Numerical Model 
 

The numerical method used for discretizing the equation system is the Control volume method of Patankar. In the 
implementation herein, a system of generalized coordinates was used although all simulation to be shown employed 
only Cartesian coordinates. Nevertheless, the use of a general system η-ξ for discretizing the equations was found to be 
adequate for future simulations. 

Since the entire derivation herein if set up for solving two-dimensional flows, both cases employ the spatially 
periodic boundary condition along the x coordinate. This if done in order to simulate fully developed flow for which 
analytical solutions are available for comparison. The spatially periodic condition is implemented by running the 
solution repetitively, until outlet profiles in x=W match those at the inlet (x=0). 

Figure 2 shows a general control volume in a two-dimensional configuration. The faces of the volume are formed 
by lines of constant coordinates η-ξ. 

 

y

x

ξ
η

• E

• N

• P

ne
nw

sw se

e

n

w

s

1e

• S

• W

2e

 
Figure 2: Notation for control volume discretization. 
 

For steady-state, a general form of the discrete equations for a general variable ϕϕϕϕ becomes, 
 

ϕϕϕϕSIIII snwe =+++  (5) 
 

where eI , wI , nI  e sI  are the fluxes of ϕϕϕϕ at faces east, west, north and south of the control volume of Figure 2, 
respectively, and ϕS  is a source term. The fully discretization of the transport equation is reported in Pedras and de 
Lemos, (2001b). Here, all computations were carried out until the residue of the algebraic equations was brought down 
to 10-9, where the residue was defined as the difference between the right and left sides of the discretized equations. 

Figure 1b) shows the used computational grid, having 42 grid nodes in the longitudinal x-direction and 259 nodes 
along the cross-stream y coordinate. The spatially periodic boundary condition was applied along the main flow 
direction in order to simulate fully developed flow. 

 
4. Results and discussion 
 

The Figure 3a) and 3b) show the effect of the Reynolds number in the velocity fields with φ=0.524, K=4.409×10-

7m2, for a computational grid having 42 grid nodes, in the axial direction , x  and 195 grid nodes in the transversal 
direction , y , at the positions x/W=0.5 and x/W=1, respectively. One notes that, the higher the Reynolds number, the 
higher the global mass flux. 
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Figure 3: Effect of Reynolds number for H=0.08m: a) section at x/W=0.5; b) section at x/W=1. 
 

Figure 4a) and 4b) show the influence of the porosity,φ and the permeability, K, in the velocity fields. It is clearly 
seen from the Figure 4a) and 4b), the higher the porosity-permeability, the higher the mass flux at the porous region 
and, consequently, the lower the flux at the clear region, for both x/W=0.5 and x/W=1 positions, respectively. 

The permeability, K, is calculated using the modified Ergun equation for cylindrical rods [Kuwahara et. al. (1998)]: 
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where φ  is the porosity and Dp is the cylindrical rod diameter. 

The Figure 5a) and 5b) show the effect of the Reynolds number in the velocity profiles, for H=0.105m, ReH=100 
using a mesh having 42 grid nodes in the longitudinal direction, x and 195 grid nodes in the transversal direction, y, 
respectively at the x/W=0.5 and x/W=1 positions. One verifies that, the higher the Reynolds number, the higher the 
global mass flux. 

Figure 6a) and 6b) show the effect of the porosity and permeability in the velocity profiles. It is clearly seen from 
the Figure 6a) and 6b), as expected, the higher the φ-K, the higher the mass flux at the porous region and consequently, 
the lower the mass flux at the clear region. It is important to emphasize that the porosity, φ and the permeability K are 
correlate by Eq (6). 
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Figure 4: Effect of porosity, φ, in the velocity fields for H=0.08m: a) section at x/W=0.5; b) section at x/W=1. 
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Figure 5: Effect of Reynolds number for H=0.105m: a) section at x/W=0.5; b) section at x/W=1. 

 

0.0x100 4.0x10-4 8.0x10-4 1.2x10-3 1.6x10-3 2.0x10-3

u [m/s]

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

0.04
0.045

0.05
0.055

0.06
0.065

0.07
0.075

0.08
0.085

0.09
0.095

0.1
0.105

y [m]

Grid: 42×259
ReH=100, x/W=0.5

3 rods - φ=0.7144, K=3.104×10-6m2

4 rods - φ=0.62, K=1.146×10-6m2

5 rods - φ=0.524, K=4.409×10-7m2

 
a) 

0.0x100 4.0x10-4 8.0x10-4 1.2x10-3

u [m/s]

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

0.04
0.045

0.05
0.055

0.06
0.065

0.07
0.075

0.08
0.085

0.09
0.095

0.1
0.105

y [m]

Grid: 42×259
ReH=100, x/W=1

3 rods - φ=0.7144, K=3.104×10-6m2

4 rods - φ=0.62, K=1.146×10-6m2

5 rods - φ=0.524, K=4.409×10-7m2

 
b) 

Figure 6: Effect of the porosity, φ, in the velocity fields for H=0.08m: a) section at x/W=0.5; b) section at x/W=1 

Table 1 and 2 show the pressure drop along the channel for H=0.08m and H=0.105m, respectively. One note that, 
the higher the Reynolds number or the porosity, the higher the pressure drop along the channel. The results of Table 1 
for the pressure drop were obtained as follows: 

∫ −=∆
tAt

dApp
A

p )(1
outletinlet  (7) 

where tA  is the transversal channel area, φ is the porosity, inletp  is the inlet pressure and outletp  is the outlet pressure. 

Table 1: Pressure drop for H=0.08m. 

Dp=0.01m, hp=0.055m, hf=0.025m, H=0.08m, W=0.015m [ ]2N/m p∆  ×10-5 
5 rods, φ=0.524, K=4.409×10-7m2, l=L=0.001m 
ReH=50 1.33134 
ReH=100 2.6507 
ReH=200 5.4391 

 
ReH=100 
3 rods, φ=0.7144, K=3.104×10-6m2, l=0.005m, L=0.01m 0.8321 
4 rods, φ=0.62, K=1.146×10-6m2, l=0.003m, L=0.004m 3.9501 
5 rods, φ=0.524, K=4.409×10-7m2, l=L=0.001m 2.6507 



 

 

Table 2: Pressure drop for H=0.105m. 

 
Dp=0.01m, hp=0.055m, hf=0.05m, H=0.105m, W=0.015m [ ]2N/m p∆  ×10-5 

5 rods, φ=0.524, K=4.409×10-7m2, l=L=0.001m 
ReH=50 1.3024 
ReH=100 2.6455 
ReH=200 5.4936 
 
ReH=100  
3 rods, φ=0.7144, K=3.104×10-6m2, l=0.005m, L=0.01m 0.83239 
4 rods, φ=0.62, K=1.146×10-6m2, l=0.003m, L=0.004m 3.9504 
5 rods, φ=0.524, K=4.409×10-7m2, l=L=0.001m 2.6455 
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Figure 7: Velocity Field for ReH=100 e H=0.08m: a) 3 rods (φ=0.7144, K=3.104×10-6m2), b) 4 rods (φ=0.62, 
K=1.146×10-6m2), c) 5 rods (φ=0.524, K=4.409×10-7m2). 
 

Figure 7 shows velocity fields in the axial direction, x, for 3, 4 and 5 rods, respectively. One note that the higher the 
number of cylindrical rods the lower the porosity and permeability, consequently, the lower the mass flux in the rods 
region and the higher the mass flux in the clear region. 
 
5. Concluding Remarks 
 

Numerical solutions for laminar flow in a composite channel were obtained for different values of ReH and φ-K 
properties. The porous matrix is modeled as an array of cylindrical rods. Governing equations were discretized are 
results in the fluid region. Results herein may contribute to the analysis of important environmental and engineering 
flows where a detailed analysis is of great importance. 
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