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Abstract. A number of natural and engineering systems can be characterized by some sort of porous structure through which a 
working fluid permeates. Boundary layers over tropical forests and spreading of chemical contaminants through underground water 
reservoirs are examples of important environmental flows. The literature proposes a jump condition in which stresses at both sides 
of the interface are not of the same value. The objective of this paper is to present a numerical investigation for solving such hybrid 
medium, considering here a channel partially filled with a porous layer whose interface has a wavy shape, around which fluid flows 
in laminar regime. One unique set of transport equations is applied to both regions. Results are presented for the mean velocity 
across both the porous structure and the clear region. The influence of medium properties, such as porosity and permeability, is 
discussed. 
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1. Introduction 
 
 Frequently, homogenization of local properties in porous media is obtained by means of the Volume-Average 
Theorem (VAT) (Whitaker (1969), Gray and Lee (1977)). When the domain presents a macroscopic interfacial area, the 
literature proposes the existence of a stress jump interface condition between the clear flow region and the porous 
medium (Ochoa-Tapia and Whitaker (1995a-b)). Analytical solutions involving such models have been published 
[Kuznetsov (1996, 1997, 1998a-b, 1999)]. 
 Additionally, purely numerical simulations for two-dimensional hybrid medium (porous region-clear flow) in an 
isothermal channel have been considered in de Lemos and Pedras (2000) based on the turbulence model proposed in 
Pedras and de Lemos (2001a-b). That work has been developed under the double-decomposition concept (Pedras and de 
Lemos (1999, 2000), Rocamora and de Lemos (2000a)). Non-isothermal flow in channels past a porous obstacle 
[Rocamora and de Lemos (2000b] and through a porous insert have also been presented (Rocamora and de Lemos 
(2000c) ). In all previous work of de Lemos and Pedras (2000) and Rocamora and de Lemos (2000b-d), the interface 
boundary condition considered a continuous function for the stress field across the interface. Recently, de Lemos and 
Silva (2002a-b) and Silva and de Lemos (2003a-b) presented numerical solutions for laminar and turbulent flow in a 
channel partially filled with a flat layer of porous material. There, the authors considered the stress jump condition at 
the interface. Such works were based on a numerical methodology proposed for hybrid media (de Lemos and Pedras 
(2000), Rocamora and de Lemos (2000b-c)). 

All of the above considered a flat interface dividing the porous substrate and the clear region. However, some 
natural and engineering flows are better characterized by a porous matrix having an irregular surface rather than a plane 
geometry. Therefore, the objective of this paper is to extend the previous work on laminar flow in multilayered channels 
considering now a wavy interface between the porous medium and the clear flow passage. 
 
2. Macroscopic Model 
 

2.1 Geometry 
 
The flow under consideration is schematically shown in Figure 1 where a channel is partially filled with a layer of a 

porous material. Constant property fluid flows longitudinally from left to right permeating through both the clear region 
and the porous structure Here, the interface has a sinusoidal shape being characterized by an amplitude a and a wave 
number, n=L/λ, where λ is the wavelength and L is axial length of the channel. Also, H is the channel height. 
 

2.2 Governing equations 
 

A macroscopic form of the governing equations is obtained by taking the volumetric average of the entire equation 
set. In this development, the porous medium is considered to be rigid, undeformable and saturated by an incompressible 
fluid. 

The microscopic continuity equation for the fluid phase is given by. 
 

0=⋅∇ u  (1) 
 

Applying the volume-average operator to equation (1), one has (see Pedras and de Lemos (2001a)). 
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0=⋅∇ Du  (2) 

 
where the local velocity vector u  is of null value at the local interfacial area m

iA  (not to confuse with the 

macroscopic interface area iA ) and the Dupuit-Forchheimer relationship, i
D uu φ= , has been used were the operator 

“<  >” identifies the intrinsic (liquid volume based) average of u  (Gray and Lee (1977)). Equation (2) represents the 
macroscopic continuity equation for an incompressible fluid in a rigid porous medium. 

The microscopic Naviek-Stokes equation for an incompressible fluid with constant properties can be written as, 
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Hsu and Cheng (1990) have applied the volume averaging procedure to equation (3) obtaining, 
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where 
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The term R  represents the total drag per unit volume acting on the fluid by the action of the porous structure. A 

common model for it is known as the Darcy-Forchheimer extended model and is given by 
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Figure 1: Channel with porous layer of wavy interface. 
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where the constant Fc  is known in the literature as the non-linear Forchheimer coefficient. 

Then, making use again of the expression i
D 〉〈= uu φ , equation (6) can be rewritten as, 
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2.2 Interface Condition between the Clear Fluid and the Porous Medium 

 
The equation proposed in Ochoa-Tapia and Whitaker (1995a-b) for describing the stress jump at the interface 

between the clear flow region and the porous structures is given by, 
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where 

ξDu  is the Darcy velocity component parallel to the interface aligned with the direction ξ and normal to the 

direction η, φµµ =eff  is the effective viscosity for the porous region, µ  is the fluid dynamic viscosity, K is the 
permeability and β an adjustable coefficient which accounts for the stress jump at the interface. Equation (8) will be 
later adapted to the geometry and coordinate system here employed. 

For hybrid domains, in addition to equation (8), continuity of velocity and pressure fields prevailing at the interface 
are given by, 

 

FluidClear Medium Porous DD uu =  (9) 
 

FluidClear Medium Porous
ii pp 〉〈=〉〈  (10) 

 
Conditions (8), (9) and (10) were proposed in Ochoa-Tapia and Whitaker (1995a-b) using the concept of stress jump at 
the interface. 

 
3. Numerical Model 

 
The numerical method used for discretizing the system of equations is the Control volume method of Patankar 

(1980). In the implementation herein, a system of generalized coordinates was used although all simulation to be shown 
employed only Cartesian coordinates. Nevertheless, the use of a general system η-ξ  for discretizing the equations was 
found to be adequate for future simulations. 

Since the entire derivation herein if set up for solving two-dimensional flows, both cases employ the spatially 
periodic boundary condition along the x coordinate. This if done in order to simulate fully developed flow for which 
analytical solutions are available for comparison. The spatially periodic condition is implemented by running the 
solution repetitively, until outlet profiles in x=L match those at the inlet (x=0). 
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Figure 2: Notation for control volume discretization. 

 
Figure 3: Computational grid. 



 

 

Figure 2 shows a general control volume in a two-dimensional configuration. The faces of the volume are formed 
by lines of constant coordinates η-ξ. 

 
For steady-state, a general form of the discrete equations for a general variable ϕϕϕϕ becomes, 
 

ϕϕϕϕSIIII snwe =+++  (11) 
 
where eI , wI , nI  e sI  are the fluxes of ϕϕϕϕ at faces east, west, north and south of the control volume of Figure 2, 

respectively, and ϕS  is a source term. Details on the numerical methodology employed in obtaining (11) and for 
discretization for (8) can be found respectively in (Pedras and de Lemos (2001b-c-d) and Silva and de Lemos (2003)). 
Here, all computations were carried out until the normalized residue of the algebraic equations was brought down to  
10-7, where the residue was defined as the difference between the right and left sides of the discretized equations. 

Figure 3 shows the used computational, having 51 grid nodes in the longitudinal x-direction and 81 nodes along the 
cross-stream y coordinate. As mentioned, the spatially periodic boundary condition was applied along the main flow 
direction in order to simulate fully developed flow. 
 
4. Results and discussion 
 

Figure 4 shows the effect of the Reynolds number, ReH, on profiles of the axial velocity for φ=0.6, K=1×10-6m2, 
β=0, n=2 and a=1/3 for the axial location, namely x/L=0.74 (valley) and x/L=1 (peak).  Is can be noted the increased 
mass flow rate at the unobstructed region with little change of the mass flow rate inside the porous substrate. It is also 
interesting to note that recirculation region at the valley for the given material properties. 
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Figure 5: Effect of porosity φ  on velocity profiles for n=2, a=1/3: a) x/L=0.74 (valley), b) x/L=1 (peak). 
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Figure 4: Effect of ReH on velocity profiles for n=2, a=1/3: a) x/L=0.74 (valley), b) x/L=1 (peak). 



 

 

 
The effect of porosity φ of the porous bed on the on the flow is presented in Figure 5, K=1×10-6m2, ReH=100, wave 

number n=2 and amplitude a=1/3 (see Figure 1 for dimensions), for positions at x/L=0.74 (valley) and at x/L=1 (peak). 
Here, it is interesting to observe that nearly no change in the mass flow rate across the channel is noted. Figure 6 shows 
a little more sensitivity of velocity values when the permeability K is varied, with higher mass flow rates within the 
porous substrate as the permeability increases. 

 
Velocity profiles at the same axial locations account for he influence of the jump coefficient β in Figure 7. As 

observed in the cases of flat surfaces (Silva and de Lemos (2003) ), there little influence of β on the flow pattern. 
 

 
Pressure losses along the channel are calculated according to, 

 

∫ −=∆
tAt

dApp
A

p )(1
outletinletφ

φ
 (12) 

 
where tA  is the channel transversal area, inletp  is the local inlet pressure and outletp  is the pressure at the exit for each 
cell height. The Table shows that stronger pressure gradients occurs when values of β, φ are higher, noting that for all 
these cases the overall flow rate in the channel was forced to be the same (same ReH). For higher K, however, the 
pressure drop is reduced. Also noted is that, as expected, for a higher Reynolds number the pressure loss become of a 
higher value. 
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Figure 6: Effect of permeability K on velocity profiles for n=2, a=1/3: a) x/L=0.74 (valley), b) x/L=1 (peak). 
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Figure 7: Effect of parameter β on velocity profiles for n=2, a=1/3: a) x/L=0.74 (valley), b) x/L=1 (peak). 



 

 

 
 

Table 1: Pressure drop for periodic flow 

ReH=100, K=1×10-6m2, φ=0.6, n=2, a=1/3 [ ]2N/m p∆  ×10-5 
β=-0.5 2.869 
β=0 2.875 
β=0.5 2.880 

β=0, ReH=100, K=1×10-6m2, n=2, a=1/3 
φ=0.4 2.691 
φ=0.6 2.875 
φ=0.8 2.995 

β=0, ReH=100, φ=0.6, n=2, a=1/3 
K=1×10-8m2 2.880 
K=1×10-6m2 2.875 
K=1×10-4m2 2.306 

β=0, K=1×10-6m2, φ=0.6, n=2, a=1/3 
ReH=100 2.875 
ReH=200 17.187 
ReH=300 3115.542 

 
 
5. Concluding Remarks 
 

Numerical solutions for laminar flow in a composite channel were obtained for different values of ReH and φ-K 
properties. The interface between the porous medium and the clear flow was assumed to be of a sinusoidal form. 
Governing equations were discretized and solved for both domains making use of one unique numerical methodology. 
Results herein my contribute to the analysis of important environmental and engineering flows where an irregular 
interface surrounding a porous body may be identified. 
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