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Abstract. The present paper presents an analysis of turbulent heat transfer in two-energy equation model for conduction and 
convection in porous media, which is needed when the local thermal equilibrium between the fluid and solid phases breaks down. 
Recently, Rocamora and de Lemos (2003) have developed a macroscopic energy equation for homogeneous, rigid and saturated 
porous media, considering local thermal equilibrium. This work is intended to extend the transport model of Rocamora and de 
Lemos (2003) considering local thermal non-equilibrium. The similarity of periodically fully developed temperature profiles allows 
one to perform a numerical experiment using only a single structural unit for determining the fully developed heat transfer 
coefficient. The macroscopic time-average equations for mass, momentum and energy are obtained based on the Double 
Decomposition concept (spatial deviations and temporal fluctuations).The numerical technique employed for discretizing the 
governing equations is the control volume method with a boundary-fitted non-orthogonal coordinate system. The SIMPLE algorithm 
is used to handle the pressure-velocity coupling. 
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1. Introduction  

 
In many industrial applications, turbulent flow through a packed bed represents an important configuration for 

efficient heat and mass transfer. A common model for such systems is the so- called “local thermal equilibrium” where 
both solid and fluid phases are assumed to be represented by a unique temperature (de Lemos and Rocamora (2002) ). 
However, in many instances it is important to take into account distinct temperatures for the porous material and for the 
working fluid. In transient heat conduction processes within porous media, for example, the assumption of local thermal 
equilibrium must be discarded, according Kaviany (1995) and Hsu (1999). When there is significant heat generations 
occurring in any one of the two phases (solid or fluid), the temperatures in the two phases are no longer identical, so the 
assumption of local thermal equilibrium must be discarded too. Kuznetsov (1998) presented same cases where the 
temperature difference between the fluid and solid phases is found to be small compared to the difference between the 
inlet temperature of the fluid phase and the initial temperature of the packed bed suggesting that equations governing 
thermal non-equilibrium forced flow through a packed bed contain a small parameter. The two- energy model is used 
for these cases where thermal equilibrium is assumed. Using the two energy equation model requires the knowledge of 
an extra parameter to be determined experimentally, namely the heat transfer coefficient between the fluid and solid 
phases. 

Quintard, M., (1998) argues that assessing the validity of the assumption of local thermal equilibrium is not a 
simple task, since the temperature difference between the two phases cannot easily be estimated, and suggest that use of 
a two-energy equation model is a possible solution to the problem. 

Kuwahara et. al (2001) propose a numerical procedure to determine the macroscopic transport coefficients from a 
theoretical basis without any empiricism. They used only a single structural unit to simulate a porous medium, and 
determine the interfacial heat transfer coefficient for the asymptotic case in which the conductivity of the solid phase is 
infinite. Nakayama et. al (2001) extend the closure model of Hsu (1999), so as to treat not only conduction but also 
convection in porous media. Having established the macroscopic energy equations for both phases, useful exact 
solutions were obtained for two fundamental heat transfer processes associated with porous media, namely, steady 
conduction in a porous slab with internal heat generation within the solid, and also, thermally developing flow through a 
semi-infinite porous medium. 

Pedras and de Lemos (2000, 2001a-b-c, 2003) introduced a new concept called Double Decomposition and used it 
to develop a macroscopic model for turbulent momentum transport in porous media. This methodology, initially 
developed for the flow variables, has been extended by Rocamora and de Lemos (2000) and de Lemos and Rocamora 
(2002), to heat transfer in porous media where both time fluctuations and spatial deviations were considered for velocity 
and temperature. A general classification of all proposed models for turbulent flow and heat transfer in porous media 
has been recently published de Lemos and Pedras (2001). Based on this same concept, Rocamora and de Lemos (2003) 
have developed a macroscopic turbulent energy equation for a homogeneous, rigid and saturated porous medium, 
considering local thermal equilibrium between the fluid and the solid matrix. 

This paper propose an analysis of macroscopic turbulent heat transfer using two-energy equation model for 
conduction and convection in porous media, extend the transport model of Rocamora and de Lemos (2003) considering 
the local thermal non-equilibrium based on the Double Decomposition concept. 
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2. Mathematical Model 
 

2.1 Microscopic Transport Equations 
 
The microscopic transport equations for the flow and energy for an incompressible fluid are given by: 
 
Continuity, 
 

0=⋅∇ u  (1) 
 
Momentum, 
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The microscopic energy equations for the fluid and solid phases in a rigid homogeneous porous medium can be 

stated as: 
Fluid, 
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Solid - (Porous Matrix), 
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where the subscripts f and s refer to fluid and solid phases, respectively. Here T is the temperature, p is the pressure, u  
is the fluid instantaneous velocity, k is the thermal conductivity, ρ  is the density, pc  is the specific heat and S is the 
heat generation term. If there is no heat generation either in the solid or in the fluid, one has further: 
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2.2 Macroscopic Transport Equations 

 
2.2.1 Time and Volume average operators and the Double Decomposition concept 

 
The macroscopic transport equations for a porous medium for the turbulent flow regime are obtained through the 

application of the time and volume average operators, with the help of the Local Volume Average Theorems (LVAT) 
[Pedras and de Lemos (2000, 2001a)]. These operators, for a generic quantityϕ , are defined as: 
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Intrinsic Volume Average, 
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Surface Volume Average (Fluid quantity), 
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where V∆  is a Representative Elementary Volume (REV) over which the volume averages are taken, fV∆  is the fluid 
volume contained in the REV, φ  is the porosity and t∆  is the time interval over which the time average is taken. 

Besides, the Double Decomposition concept, introduced by Pedras and de Lemos (2000, 2001a-b-c, 2003), is used 
here to obtain the macroscopic equations for turbulent flow in a rigid, homogeneous and saturated porous medium. This 
concept establishes that, for a generic quantity ϕ , one can write: 
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or 

ϕϕϕϕϕϕϕ ′++
′

〉〈+〉〈=+〉〈= iiiiii  (10) 
 
Equations (9) and (10) envisage the two sequences of application of the average operators (time and volume), 

where ϕ′i  represents the spatial deviation of the time fluctuation or the time fluctuation of the spatial deviation of the 
quantity ϕ . 

 
2.2.2 Macroscopic Flow Equations 

 
For the flow equations, de Lemos and Pedras (2001) [(7), (8)] have shown that the macroscopic equations can be 

expressed as: 
Continuity, 
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Momentum, 
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where the last two terms in equation (12), represent the so-called Darcy and Forchheimer (1901) contributions. The 
symbol K is the porous medium permeability, cF is the form drag coefficient (Forchheimer coefficient), ip〉〈  is the 
intrinsic average pressure of the fluid, ρ is the fluid density, µ represents the fluid viscosity and φ is the porosity of the 
porous medium. The macroscopic Reynolds stress i〉′′〈− uuρφ  is given as, 
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where 
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is the macroscopic deformation tensor, 2iik 〉′⋅′〈=〉〈 uu  is the intrinsic turbulent kinetic energy, k and 

φ
µ t , is the 

turbulent viscosity which is modeled in de Lemos and Pedras (2001) similarly to the case of clear flow, in the form, 
 

i

i

t
kfc
〉〈
〉〈=

ε
ρµ µµφ

2

, (15) 

 
Turbulent kinetic energy per unit mass, 
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Turbulent energy dissipation rate, 
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2.3 Macroscopic Energy Equation 

 
In this section, the macroscopic energy equation is obtained for a porous medium starting from the microscopic 

energy equations for the fluid and solid phases. Then, time averaging is applied followed by volume averaging (or vice 
versa). 

Applying the time average and then the volume average, or vice-versa, to equations (3) and (4) in a Representative 
Elementary Volume (REV), one obtains: 
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where Ai is the interface area between the fluid and solid phases within the REV, ∆V is the REV volume, and n is the 
unit vector normal to the fluid-solid interface. 

Equations (18) and (19) are the macroscopic energy equations for the fluid and the porous matrix (solid) taking first 
the time average followed by the volume average operator. 

Further, using the double decomposition concept, Rocamora and de Lemos (2000) have shown that the fourth term 
on the left hand side of equation. (18) can be expressed as: 
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So, in view of equation (20), equation (18) can be rewritten as: 
 

( ) ( )[ ]

∫∫ ∇⋅
∆

+












∆
⋅∇

+〉〈∇⋅∇=









































〉′′〈+〉′〈〉′〈+〉〈+〉〈〉〈⋅∇+

∂
〉〈∂

ii A
ff

IV

A
ff

i
ff

III

i
f

ii

II

i
f

i

I

i
f

iii
f

i
i

f
fp

dSTk
V

dSTk
V

TkTTTT
t

T
c

nn

uuuu

11

444 3444 21

434214342143421
φφ

φ
ρ

 (21) 

 
where to the underscored terms in equation (21) the following physical significance can be attributed: 

 
I Thermal dispersion associated with deviations of microscopic time average velocity and temperature. Note that 

this term is also present when analyzing laminar convective heat transfer in porous media. 
II Turbulent heat flux due to the fluctuating components of macroscopic velocity and temperature 
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III Turbulent thermal dispersion in a porous medium due to both time fluctuations and spatial deviations of both 
microscopic velocity and temperature. 

IV Tortuosity based on microscopic time average temperature. 
 
Two-energy equation model for conduction and convection in porous media considering a heat transfer coefficient 

between the fluid and solid phases are given by, respectively, 
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where, i

sT 〉〈  and i
fT 〉〈  denote the intrinsically averaged temperature of solid phase and fluid phase, h and ia  are the 

interfacial convective heat transfer coefficient and specific surface area, respectively. Where, h is given by, 
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The proposed model by Kuwahara et. al (2001) describing the microscopic structure of a porous medium will be 

used to obtain the interfacial heat transfer coefficient for the macroscopic transport model and a porous medium for the 
turbulent flow regime. 

 

 
3. Preliminary Laminar Results 

 
In order to evaluate the numerical tool to be used in the determination of the film coefficient given by (24), a tes 

case was run for obtaining the flow field in a periodic cell, which is here assumed to represent the porous medium. 
Accordingly, consider now a macroscopically uniform flow through an infinite number of square rods placed in a 
staggered fashion, as shown in Figure 1. All square rods, which may be regarded as heat sinks (or sources), are 
isothermal and maintained at a constant temperature Tw, which is lower (higher) than the bulk mean temperature of the 
flowing fluid. 

The representative elementary volume V∆ , which should be smaller than a macroscopic characteristic length, can 
be taken as 2H x H for this periodic structure. Due to the periodicity of the model, only one structural unit as indicated 
by dashed lines in the Figure 1 may be taken as a calculation domain. 

The numerical method utilized to solve the microscopic flow and energy equations in the unit cell is the Finite 
Volume with Generalized Coordinates. The SIMPLE method of Patankar (1980) is used for the velocity-pressure 
coupling. Convergence is measured in terms of the normalized for each variable during iteration. The maximum residue 
allowed for the convergence check is set to 10-7, as the variables are normalized by appropriate references. 

 
Figure 1. Physical model and its coordinate system. 



 

 

 

 
All computations have been carried out for a one structural unit 2H × H using a non-uniform grid arrangement of 

size 90×60 nodes, as shown in Figure 2, to ensure that the results were independent of the grid system. The Reynolds 
number was varied from 100 to 102 and the porosity φ was equal to 0.75. 

At the periodically fully developed stage, the velocity must be identical to that at the inlet, whereas the temperature 
profile at the exit must be similar to that at the inlet. The situation is analogous to the case of forced convection in a 
channel with isothermal walls. Thus, the boundary, compatibility and periodic constraints are given by: 

On the solid walls, 
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On the periodic boundaries: 
 

Hyy

Hxx

==

==

=

=

uu

uu

0

20  (26) 

 

〉〈==

〉〈==

==

==

∫∫

∫∫

u

u

Hdxvdxv

Hdyudyu

Hy

H

y

H

Hx

H

x

H

000

2000
 (27) 

 
02 )()( == −=− xwHxw TTTT τ  (28) 

 
where 
 

0

2
2/

2/
0

2/

2/
2

)(
)(

)(

)(

=

=

−
=

−
=

−
−

=
−

−
≡

∫

∫
xwB

HxwB
H

H
xw

H

H
Hxw

TT
TT

dyTTu

dyTTu
τ  (29) 

 
TB(x) is the bulk mean temperature of the fluid. Computations can be made using the equations based on the Darcy 

velocity, the length of structural unit H and the temperature difference (TB(0) – Tw) as references scales. For carrying 
out computations for a parametric study, it may be convenient to use the Reynolds number based on H as 

ν/Re H〉〈= u  and 2)/(1 HD−=φ . 
 

4. Preliminary Numerical Results and Discussion 
 
The preliminary results were the velocity and temperature fields obtained for three different Reynolds numbers, as 

shown in Figure 3. When the Reynolds number is low (Re = 1), the velocity field around a rod appears very much 
similar to what we observe in a channel, namely the parabolic profile. As increasing Re, recirculation bubbles expand 

 
Figure 2. Non uniform computational grid used for running preliminary laminar calculations. 



 

 

further behind the rod. When the Reynolds number is sufficiently high, the thermal boundary layers cover around the 
rods as shown in Figure 4, such that convective heat transfer overwhelms thermal diffusion. 

Kuwahara et. al (2001) modeled a porous medium in terms of obstacles arranged in a regular pattern, and solver the 
set of the microscopic governing equations, exploiting periodic boundary conditions. The results of Kuwahara et. al 
(2001) shown in Figure 3 and Figure 4 were processed using φ=0.7 while the present results were processed using 
φ=0.7. 

 

 
5. Concluding remarks 

A macroscopic models was presented, which take into consideration the exchange of heat between the porous 
substrate and the working fluid. As a preliminary result, a macroscopically uniform laminar flow through a periodic 
model of isothermal square rods was computed, considering periodically fully developed velocity and temperature 
fields. Upon noting the repetitiveness of flow and temperature profiles, only a single structural unit has been taken for a 
calculation domain. Qualitative agreement was obtained when comparing the preliminary results herein with simulation 
by Kuwahara et. al (2001). Further work will be carried out in order to simulate fully turbulent flow and heat transfer in 
porous media by means of the proposed two-energy equation. Ultimately, it is expected that a correlation for the heat 
transfer coefficient be obtained so that the exchange energy between the solid and the fluid can be accounted for. 
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