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Abstract. In this work, numerical solutions are presented for turbulent flow in a channel containing fins made with porous material. 
A macroscopic two-equation turbulence model is employed in both the porous region and the clear fluid. The equations of 
momentum, mass continuity and turbulence transport equations are written for an elementary representative volume yielding a set 
of equation valid for the entire computational domain. These equations are discretized for the method of control volume and the 
system of equations algebraic resultant, and resolved for the method SIMPLE. Results are presented for the velocity and turbulence 
kinetic energy fields, as a function of Reynolds and pressure drop.  
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1. Introduction  
 

Turbulent fluid flow in channels containing porous and solid obstacles is found in a number of engineering 
equipment such as shell-and-tube heat exchangers. Several other applications are found in the chemical and petroleum 
industries, leading to a great interest by many research groups in order to mathematically model and realistic describe 
this type of flow (Hwang (1997), Yang and Hwang (2003), de Lemos and Tofaneli (2003) ). 

For permeable structures, modeling of turbulent flow in porous media has been investigated by Pedras and de 
Lemos (2001a-b, 2003) and de Lemos and Pedras (2001), where the authors introduced the "Double Decomposition" 
concept for developing macroscopic equations for the mean and turbulent fields. Later, the model was extended to 
account for a macroscopic interface between a porous medium and a clear flow (Silva and de Lemos (2003) ). Such 
methodology can be applied to flow over porous baffles. 

Based on the foregoing, this work presents numerical solutions of turbulent flow in a channel containing solid and 
porous baffles, as illustrated in the geometry of Figure 1. In an accompanying paper (de Lemos and Tofaneli (2003) ), a 
detailed study on the flow over porous fins was presented. Here, attention is focused on the cases of solid obstructions. 
Results are compared with experiments by Hwang (1997) and with the numerical work of Yang and Hwang (2003). 

 

 
Figure 1. Channel with porous or solid fins. 
 
 
2. Mathematical model 
 
 The mathematical model here employed has its origin in the works of Pedras and de Lemos (2001a). The 
implementation of the jump condition at the interface was considered in Silva and de Lemos (2003) based on the theory 
proposed in Ochoa-Tapia and Whitaker (1995a-b) Therefore, these equations will be here just reproduced and details 
about their derivations can be obtained in the mentioned works. These equations are: 
 
Macroscopic continuity equation: 

 0=⋅∇ Du  (1) 
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where, Du  is the average surface velocity (‘seepage’ or Darcy velocity). The equation (1) represents the macroscopic 
continuity equation for an incompressible fluid. 

Macroscopic momentum equation: 
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where the last two terms in equation (2), represent the Darcy-Forchheimer contribution. The symbol K is the porous 
medium permeability, cF is the form drag coefficient (Forchheimer coefficient), ip〉〈  is the intrinsic average pressure of 
the fluid, ρ is the fluid density, µ represents the fluid viscosity and φ is the porosity of the porous medium. The 
macroscopic Reynolds stress i〉′′〈− uuρφ  is given as, 
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is the macroscopic deformation tensor, 2iik 〉′⋅′〈=〉〈 uu  is the intrinsic turbulent kinetic energy, k, e 

φ
µt , is the 

turbulent viscosity which is modeled in Pedras and de Lemos (2001b) similarly to the case of clear flow, in the form, 
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Transport equations for ik〉〈  and its dissipations rate ( ) ρµε iTi 〉′∇′∇〈=〉〈 u:u  are proposed in Pedras and de Lemos 
(2001a) as: 
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where c1, c2 , c3 and ck are model constants, D
iiP uuu ∇:〉′′〈−= ρ  and 
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due to gradients of Du  and due to the action of the porous matrix. 
At the interface, the conditions of continuity of velocity, pressure, turbulent kinetic energy k  and its dissipation 

rate ε , in addition to their respective diffusive fluxes, are given by, 
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The jump condition at the interface is given by, 
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 The non-slip condition for velocity is applied to all walls. 
 
3. Numerical method 

The numerical method utilized to solve the flow equations is the Finite Volume method applied to a boundary-
fitted coordinate system. Equations (1)-(2) subjected to boundary and interface conditions (7)-(13), were discretized in a 
two-dimensional control volume involving both clear and porous media. The numerical method used in the resolution of 
the equations above was the SIMPLE algorithm of Patankar (1980). The interface is positioned to coincide with the 
border between two control volumes, generating, in such a way, only volumes of the types 'totally porous' or 'totally 
clear'. The flow equations are then resolved in the porous and clear domains, being respected the interface conditions 
mentioned earlier. Details of the numerical implementation can be seen in Pedras and de Lemos (2001b) and Silva and 
de Lemos (2003). 
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c) Velocity field  
 

Figure 2: Velocity vectors and pressure contours for solid-type baffles for Re=30000 and h/H-0.5: a-b) Present 
results, c) Yang and Hwang (2003). 



 

 

 

 
4. Results and discussion 

 
Figure 2 shows a comparison between the present results and the ones obtained by Yang and Hwang (2003), where 

16 solid fins were placed along the 1400mm of the channel of Figure 1. The drawings shows the calculate velocity and 
pressure fields for Reynolds number equal to 30000. A qualitative comparison with results by Yang and Hwang (2003) 
indicates that velocity values match at corresponding locations inside the channel. As far as pressure values, no such 
distribution was reported in Yang and Hwang (2003). It is interesting also to observe that away from the entrance and 
within the section shown in Figure 2, the flow becomes spatially periodic along the main direction. Also, the flow is 
forced against the walls, which may improve heat exchange rates between the heated surfaces and the fluid. In the 
overall, one could say that the present work shows a good agreement with the work of Yang and Hwang (2003). 

Statistical turbulent fields for k and ε are shown in Figure 3, also for Re=30000. As can be observed in Figure 3a, 
the largest levels of turbulence kinetic energy are close of the walls, opposed to the fin tips. It this wall region, the fluid 
is forced to impinge upon the walls, enhancing local mixing rates and converting mean mechanical kinetic energy into 
turbulence. The turbulence kinetic energy dissipation rate behaves quite similarly. 

Table 1 finally shows the friction factor for the channel filled with fins of the solid and porous. Results are 
compared with data by Hwang (1997) and similar computations by Yang and Hwang (2003). For the experimental 
results obtained by Hwang (1997), the following correlation was used: 

 

 
2Re1

ddf =  (14) 
 
where 1d  and 2d  are coefficients given by: 1d  =31.64 and 2d =0, i.e., the friction factor is independent of the Reynolds 
number. As can be observed, the present result seems to be in good agreement with the correlation by Hwang (1997). 
Also interesting to emphasize are the conformity of the present numerical methodology with the literature for both cases 
involving either solid or porous baffles. 
 
5. Concluding remarks 

 
This work presented results for the numerical solution of turbulent flow in a channel containing solid and porous 

and baffles. Discretization of the governing equations used the finite volume method of and the set of algebraic 
equations was solved by the SIMPLE method. The presented numerical results were compared with found experimental 
data and numerical simulation in literature and indicated that a qualitatively good agreement was obtained. 
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Figure 3: Statistical fields for solid fin case with Re=30000: a) k, b) ε  
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Table 1: Friction factors for channel of Figure 1 for porosity φ = 0.42 and particle diameter Dp = 0.72×10-3m. 
 

ReH h/H=0.25 h/H=0.5 h/H=0.75 

 Hwang (1997) Present 
Results Hwang (1997) Present Results Hwang 

(1997) 
Present 
Results 

30.000 3,68 5,98 22,75 24,18 49,88 59,39 
50.000 3,44 4,71 22,75 24,97 49,88 58,17 

   Solid Baffles   

   Hwang 
(1997) 

Yang and 
Hwang (2003) 

Present 
Results   

30.000 31.64 29.4 35.01   




