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Abstract. This work investigates the efficiency of the Multigrid numerical method when applied to solve the temperature field in a 
tank filled with a porous substrate. The numerical method includes finite volume discretization with the flux blended deferred 
correction scheme on structure orthogonal regular meshes. The correction storage (CS). Multigrid algorithm performance is 
compared for different values of porosity and permeability. Up to four grid for both W- and V-cycles are considered. Results 
indicate that also for flow in porous media there are advantages in using more than one computational grid when numerically 
solving the governing equations. 
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1. Introduction  
 

In most iterative numerical solutions, convergence rates of single-grid calculations are greatest in the beginning of 
the process, slowing down as the iterative process goes on. Effects like those get more pronounced as the grid becomes 
finer. Large grid sizes, however, are often needed when resolving small recirculating regions or detecting high heat 
transfer spots. The reason for this hard-to-converge behavior is that iterative methods can efficiently smooth out only 
those Fourier error components of wavelengths smaller than or comparable to the grid size. In contrast, Multigrid 
methods aim to cover a broader range of wavelengths through relaxation on more than one grid. 

The number of iterations and convergence criterion in each step along consecutive grid levels visited by the 
algorithm determines the cycling strategy, usually a V- or W-cycle. Within each cycle, the intermediate solution is 
relaxed before (pre-) and after (post-smoothing) the transportation of values to coarser (restriction) or to finer 
(prolongation) grids (Brandt (1977), Stüben & Trottenberg (1982), Hackbusch (1985) ). 

Accordingly, Multigrid methods can be roughly classified into two major categories. In the CS formulation 
algebraic equations are solved for the corrections of the variables whereas, in the full approximation storage (FAS) 
scheme, the variables themselves are handled in all grid levels. It has been pointed out in the literature that the 
application of the CS formulation is recommended for the solution of linear problems being the FAS formulation more 
suitable to non-linear cases (Brandt (1977), Stüben & Trottenberg (1982), Hackbusch (1985)). An exception to this rule 
seems to be the work of Jiang, et al (1991), who reported predictions for the Navier-Stokes equations successfully 
applying the Multigrid CS formulation. In the literature, however, not too many attempts in solving non-linear problems 
with Multigrid linear operators are found. 

Acknowledging the advantages of using multiple grids Rabi & de Lemos (1998a, 2001, 2003) presented numerical 
computations applying this technique to recirculating flows in several geometries of engineering interest. There, the 
correction storage (CS) formulation was applied to non-linear problems. Later, Rabi & de Lemos (1998b, analyzed the 
effect of Peclet number and the use of different solution cycles when solving the temperature field within flows with a 
given velocity distribution. In all those cases, the advantages in using more than one grid in iterative solution was 
confirmed, furthermore, de Lemos & Mesquita (1999), introduced the solution of the energy equation in their Multigrid 
algorithm. Temperature distribution was calculated solving the whole equation set together with the flow field as well 
as uncoupling the momentum and energy equations. A study on optimal relaxation parameters was there reported. 

More recently Mesquita & de Lemos (2000a-b, 2003) analyzed the influence of the increase of points of the mesh 
and optimal values of the parameters of the Multigrid cycle for different geometries. 

The present contribution extends the early work on CS Multigrid methods to the solution of temperature field in 
porous media. More specifically, steady-state laminar flow in a tank totally filled with a porous material is calculated 
with up to 4 grids. A schematic of such configurations is show in Figure 1. 
 
2. Governant Equations and Numerics 
 

A macroscopic form of the governing equations is obtained by taking the volumetric average of the entire equation 
set. In this development, the porous medium is considered to be rigid, undeformable and saturated by an incompressible 
fluid. 

The microscopic continuity equation for the fluid phase is given by: 

0=⋅∇ u  (1) 

Applying the volume-average operator to equation (1), one has (see Pedras & de Lemos (2001) for details), 
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0=⋅∇ Du  (2) 

The Dupuit-Forchheimer relationship, i
D uφ=u , has been used were the operator “<  >” identifies the intrinsic 

(liquid volume based) average of Du [Gray & Lee (1977)]. Equation 2 represents the macroscopic continuity equation 
for an incompressible fluid in a rigid porous medium. 

The microscopic Navier-Stokes equation for an incompressible fluid with constant properties can be written as, 

uuu 2)( ∇+−∇=∇ µρ p  (3) 

Hsu & Cheng (1990) have applied the volume averaging procedure to equation 3 obtaining, 

Ruuu +〉〈⋅∇+〉〈−∇=〉〈∇ )()()( 2 iii p φµφρφ  (4) 

where 
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The term R represents the total drag per unit volume acting on the fluid by the action of the porous structure. A 
common model for it is known as the Darcy-Forchheimer extended model and is given by: 
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where the constant cF is known in the literature as the non-linear Forchheimer coefficient. Then, making use of the 
expression, i

D uφ=u , equation 4 can be rewritten as, 
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The microscopic energy equation for an incompressible fluid with constant properties can be written as, 

TT 2

Pr
)( ∇=∇ µρ u  (8) 

Rocamora & De Lemos (2000) have applied the volume averaging procedure using the concept of double 
decomposition concept to equation 8 obtaining, the macroscopic energy equations for an incompressible flow in a rigid, 
homogeneous and saturated porous medium can be written as: 

( ) ( )[ ]{ }i
sffP Tkkc ∇−+∇ φφρ 1  (9) 

The thermal conductivity for the fluid and solid are labeled fk  and sk  respectively. Finally, pc  is the specific heat 

and φ  is the porosity, K is the permeability and Fc  is the Forchheimer coefficient. 
 
2.1. Numerical Model 
 

The solution domain is divide into a number of rectangular control volumes (CV), resulting in a structure 
orthogonal non-uniform mesh. Grid points are located according to a cell-centered scheme and velocities are store in a 
collocated arrangement (Patankar (1980) ). A typical CV with its main dimensions and internodal distances is sketched 
in Figure 2 Writing equations (2)-(4) in terms of a general form ϕ 
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where ϕ stands for U, V, and P. Integrating the equation 10 over the control volume of Figure 2, 
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Integration of the three terms in 11, namely: convection, diffusion and source, lead to a set of algebraic equations. 
These practices are described elsewhere (e.g. Patankar (1980) ) and for this reason they not repeated here. In summary, 



 

 

convective terms are discretized using the upwind differencing scheme (UDS), diffusive fluxes make use of the central 
differencing scheme. 

Substitution of all approximate expressions for interface values and gradients into the integrated transport equation 
11, gives the final discretization equation for grid node P 
 

baaaaa SSNNWWEEPP ++++= ϕϕϕϕϕ  (12) 

with the east face coefficient, for example, being define as 
 

[ ] eeE DCa +−= 0,max  (13) 

In (13) eyee xD ∆= /δµ and ( ) yee UC δρ= are the diffusive and convective fluxes at the CV east face, respectively. 
 
2.2. Multigrid Tecnique 
 

Assembling equation 12 for each control volume of Figure 1 in the domain of Figure 2 defines a linear algebraic 
equation system of the form, 
 

kkk bTA =  (14) 

 
where Ak is the matrix of coefficients, Tk is the vector of unknowns and bk is the vector accommodating source and extra 
terms. Subscript “k” refers to the grid level, with k=1 corresponding to the coarsest grid and k=M to the finest mesh. 
defined as 

As mentioned, Multigrid is here implemented in a correction storage formulation (CS) in which one seeks coarse 
grid approximations for the correction defined as *

kkk TT −=δ  where *
kT  is an intermediate value resulting from a 

small number of iterations applied to (14). For a linear problem, one shows that δk is the solution of (Brandt (1977), 
Stüben & Trottenberg (1982), Hackbusch (1985)), 
 

kkk rA =δ  (15) 

 
where the residue is defined as 
 

*
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Eq. (10) can be approximated by means of a coarse-grid equation, 
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with the restriction operator 1k

k
−I  used to obtain 
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The residue restriction is accomplished by summing up the residues corresponding to the four fine grid control 

volumes that compose the coarse grid cell. Thus, equation 18 can be rewritten as, 
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Diffusive and convection coefficients in matrix Ak need also to be evaluated when changing grid level. Diffusive 

terms are recalculated since they depend upon neighbor grid node distances whereas coarse grid mass fluxes (convective 
terms) are simply added up at control volume faces. This operation , is commonly found in the literature (Peric, et al 
(1989), Hortmann et al (1990)). 



 

 

 

Once the coarse grid approximation for the correction 1k−δ  has been calculated, the prolongation operator k
1k−I  

takes it back to the fine grid as 
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In order to update the intermediate value 

 

kkk TT δ+= *  (21) 

 
Figure 3 illustrates a 4-grid iteration scheme for both the V- and W-cycles where the different operations are: 

s=smoothing, r=restriction, cg=coarsest grid iteration and p=prolongation. Also, the number of domain sweeps before 
and after grid change is denoted by νpre and νpost, respectively. In addition, at the coarsest k level (k=1), the grid is swept 
νcg times by the error smoothing operator 
 
3. Results and Discussion 
 

The computer code developed was run on a IBM PC machine with a dual processor Pentium III 1.0 GHz. Grid 
independence studies were conducted such that the solutions presented herein are essentially grid independent. For both 
V- cycles, pre- and post-smoothing iterations were accomplished via the Gauss-Seidel algorithm while, at the coarsest-
grid, the TDMA method has been applied (Patankar (1980)). Also, the geometry of Figure 1 was run with the finest grid 
having sizes of 66x66 grid points. 

With the aim of checking the accuracy of the numerical solution, after implementation of porous media model, the 
limiting case of flow in clear fluid was simulated by setting φ = 0.998, K = 1 x1010 m2 and cF = 0. Figure 4 shows 
velocity profiles at the exit of the tank. The figure indicates that the solution with the porous model reproduces the clear 
flow situation when appropriate parameters are used. 
 
Residues. The residue is normalized and calculated according to 
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with )(∑−=
nb

nbnbPPij UaUaR  where subscript ij identifies a given control volume on the finest grid and nb refers to 

its neighboring control volumes. 
Figures 5 and 6 shows residue history for the heated tank filled with porous material case following the two cycles 

picture on Figure 3, namely the V- and W- Cycles. The solutions follows a simultaneous approach in the sense that the 
temperature is always relaxed after the flow field, within the multigrid cycle. One can readily notice for both cycles that 
for  Rein = 300, regardless of the number of grids used, faster solutions are obtained. In this case, relative importance of 
diffusion terms favors the stability of the system of equations. Also interesting to note is that for the V-cycle (Figure 5) 
the computational effort related to value transfers among too many grids became relevant. Using W-cycle (6) seems to 
bring more savings to the iterative simultaneous solution procedure. When recalling the nature of the W – cycle in 
comparison with the V – strategy (Figure 3), one can see that the number of grids transfer per cycle is less in the former 
algorithm. In addition, the more work done in the lower frequency range spectrum with the W- cycle contributes for a 
faster overall solution. The effect of medium permeability on residue history for the energy equation is shown in Figure 
7. Higher values of K require less computational effort to achieve convergence. This effect seems to be associated with 
the fact that the higher the permeability, more intensive are convection currents, leading, ultimately, to more 
convective-dominated situations. 

The effect of the medium porosity on the residue reduction rate of the U is presented in Figures 8 using the 
multigrid methodologies. The higher the porosity, the closer the flow is to unobstructed situation which, in turn, makes 
it harder for the algebraic equations to converge. 

In the works of Rabi & de Lemos (1998b, 2001,2003) and Mesquita & de Lemos (2000a-b, 2003), a study was 
carried out to investigate optimal values for the parameters vpre, vpost and vcg.. Since the intermediate solutions, before 
and after grid changes, are not fully solved but are rather relaxed vpre and vpost times, a question about their optimal 
values for increasing overall algorithm performance arises. Or say, as restriction and prolongation operations may also 
introduce imprecision to values being transferred, one should expect the computational effort to be sensitive to the 
number of smoothing sweeps. In the other words, once the intermediate numerical solution has been relaxed a number 
of times removing errors introduced by transfer operators and further reducing the residue, it is of no use to keep 
iterating at a certain grid level. The next figures help to analyze the existence of such optimal intermediate smoothing. 



 

 

For a fixed number of sweeps at the coarse grid Figure 9 reproduces the necessary time to convergence when the 
number of pre- and post-smoothing iterations was allowed to vary, keeping vpre = vpost. . Figure 9 show results for the 
heated tank filled within porous material case with vcg = 5. In Figure one can see that  more than one sweep for relaxing 
the intermediate solution, before and after grid change brings advantage to the algorithm performance. Consequently, 
further relaxation past this limit unnecessarily increases the computational effort, this effect is more pronounced for 
higher porosity. 

In Figure 10 the number of pre- and post-smoothing iterations was fixed conform was indicated in legend, whereas 
the number of coarsest-grid sweeps vcg was free to vary. For the present case, an optimum situation can be clearly 
identified for lower porosities (φ  = 0.20,0.40 and 0.60). For higher porosities (φ  = 0.80 and 0.95) no minimum value 
for the number of sweeps at coarsest grid were detected. Only one pass through the domain is enough for obtaining best 
results. 

Ultimately, both Figures 9 and 10 suggest a delicate balance between all parameters involved when minimum CPU 
consumption is sought. Most often, optimal parameters can not be easily determined a priori and adaptive strategies 
have been proposed in the literature. Generally, the ratio of residues after two successive sweeps is monitored and used 
as a criterion for switching grids. Hortmann et al (1990) points out that this pratice is preferred for single equation 
systems but, when solving the full equation set as done here, most works in the literature specify a fixed number of 
sweeps, as in the cases  here reported Sathyamurthy & Patankar (1994), Hutchinson et al (1988). 
 
4. Conclutions 

 
The Multigrid method has been implemented in a correction storage manner to numerically solve a two-

dimensional steady-state conduction-convection in porous medium problem. Structured, orthogonal and regular meshes 
were used and discretized equations were obtained through a finite volume formulation. The overall algorithm 
performance was compared for different values of the porosities and permeability, for distinct cycles, for different 
number of intermediate solution sweeps and coarsest-grid iterations. 

Results proved the superiority of the multigrid method against single grid calculations. For the cases here studied, 
they indicated that decreasing the value of K tends to increase the required computational effort and that increasing the 
value of φ  tends to increase the computational effort. These behaviors, however, may not be general and may depend 
on additional characteristics of the flow in question. 
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Figure 1 - Geometry and boundary conditions 

 

 

 

Figure 2 - Control Volume for discretization Figure 3 - Sequence of Operation in a 4-grid iteration 
(a)V-cycle, (b)W-cycle 
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Figure 4 - Velocity profiles at the exit of a tank for porous medium with cF =0.0, � =0.998 and K=1x1010m2 
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Figure 5 – Residue history for different number of grids, Rein  = 300, V-Cycle. 
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Figure 6 - Residue history for different number of grids, Rein  = 300, W-Cycle. 
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Figure 7 - Effect of Permeability K on residue history of Temperature T for 4-grids, Rein = 300.  
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Figure 8 – Effect of Porosity φ on residue history of velocity U for 4-grids, Rein = 300.  
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Figure 9 – Influence of the number of pre/post-smoothing iterations for differences porosities.  
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Figure 10 – Influence of the number of coarsest-grid iterations, vcg, on the computational effort for differences numbers 

of porosities. 
 




