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Abstract. In this article, a two-dimensional time-dependent study of the concentration of a tracer injected in a hybrid medium, i.e., a 
medium composed of several different porous media, as well as clear (unobstructed) regions, is performed using the Finite Volume 
method and a single computational domain. The mathematical model here employed is based on the ‘double-decomposition theory’ 
developed for the treatment of turbulent flow in a rigid, homogeneous and saturated porous medium. The numerical methodology is 
based on the SIMPLE method of Patankar (1980). Appropriate boundary and interface conditions, similar to the ones proposed by 
Ochoa-Tapia and Whitaker (1997) and Quintard et al. (1997), are used in order to simulate the tracer behavior in an oil reservoir. 
A totally implicit scheme is used for the time-dependent problem, which seems to be adequate in view of the velocity range involved. 
An assessment to the numerical diffusion introduced by the interpolation scheme as well as by the grid refinement is also presented 
based on a simple geometry. 
 
Keywords. Porous Medium, Turbulent heat transfer, Numerical methods 

 
1. Introduction 
 

In petroleum reservoir engineering tracers have long been used in order to obtain qualitative information of the 
underground porous medium such as flow barriers, preferential flow direction, linking paths between reservoirs, etc 
(see, e.g., Almeida and Cotta (1995), Oldenburg and Pruess (2000), and others). As the information supplied by the 
tracers is fed back into the model, it becomes more and more accurate. In order to be able to correctly interpret this 
information, it is necessary that the modeler have access to trustable reservoir simulators, knowing beforehand its 
limitations and weaknesses. This work aims at presenting a macroscopic model, based on the ‘double decomposition 
concept’, for turbulent flows in porous media proposed by Pedras and de Lemos (2000)and Pedras and de Lemos 
(2002), for the transport of a tracer in a petroleum reservoir, which is assumed to be composed of two regions with 
different permeabilities and one injection and one production wells. Although the turbulence model is not used in the 
present work due to the geometry considered, it could become necessary if one would like to detail the regions close to 
the injection or production wells, where the flow suffers significant acceleration. Also, an analysis of the influence of 
some parameters as, e.g., grid refinement and numerical schemes, on the tracer concentration front is made in order to 
establish the simulator limitations. 
 
2. Flow geometry 
 

The geometry considered in this work is based on the one presented by Wendland et al. (2001) and is shown in 
Figure 1. According to the figure, the tracer is injected at the lower left corner and the fluid is extracted from the upper 
right corner, configuring a five-spot pattern. At the center of the flow field there is a region with a different 
permeability. Also, the dimensions of the flow field are shown in the figure, including the inlet and outlet regions. 
 
3. Mathematical model 
 

For an incompressible flow through a rigid, homogeneous and saturated porous medium, Pedras and de Lemos 
(2002), using the ‘double decomposition concept’, have derived the following macroscopic turbulence flow equations: 
 
Continuity equation - 

0=⋅∇ Du  (1) 
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Figure 1 - Flow geometry. 
 
Momentum equation - 
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where the macroscopic Reynolds’ stress tensor is given by: 
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and the deformation tensor is given by: 
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Turbulent kinetic energy equation - 
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Turbulent kinetic energy dissipation rate - 
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Concentration equation -  
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where the effective diffusion-dispersion tensor, 
eff

D , was proposed by de Lemos and Mesquita (2003) following 

similar ideas for the thermal dispersion tensor obtained in Rocamora and de Lemos (2000). A model for it is given by: 

tdispdispteff
D

,
DDDID dif +++=  (9) 



 

 

In Eq. (9) the tensors 
t

D , 
disp

D  and 
t,disp

D  are due to turbulence, dispersion and turbulent dispersion, respectively, 

and will not be taken in to account in the present work. Only the diffusion coefficient for the tracer, difD , will be 
considered. 

In the equations above the surface volume average quantities are related to the intrinsic average quantities through 
the porosity φ  as: 

iv 〉〈=〉〈 ϕφϕ  (10) 

Thus, i
D 〉〈= uu φ  is the surface average fluid velocity or Darcy’s velocity. Also, the parameters µc , kσ , εσ , ε1c , 

ε2c  and kc  are model constants whose values are given in Table 1 bellow: 
 
Table 1 - High Reynolds k-ε model constants. 
 

kσ  εσ  µc  ε1c  ε2c  kc  

1.0 1.33 0.09 1.44 1.92 0.285 
 

It should be mentioned that the equations presented previously also hold for a clean-medium making φ =1 and 
∞→K . 

 
4. Numerical method 
 

The discretization of the equations is accomplished using the finite volume method in a 2D geometry. The SIMPLE 
algorithm of Patankar (1980) is used to solve the flow equations. The computational domain is divided in (64x64) cells 
for the reservoir problem. A totally implicit scheme is used for the time dependent problem with a time step of 1 (one) 
day. The results are considered converged when the residues are ≤ 10-5. To assess the numerical diffusion, four grids 
and three numerical schemes are considered. The grids are (32x5), (64x5), (128x5) and (256x5) for a (300x1) meters 
channel with symmetry boundary conditions on both sides. The numerical schemes considered are the Up-Wind 
Scheme (UPS), Central Difference Scheme (CDS), and a Blending Scheme (UPS+CDS). 
 
5. Results and discussion 
 

A summary of the cases analyzed is presented in Table (2). For the whole flow field the porosity is assumed to be 
uniform, φ =0.2. The outer region permeability is 1K =10-7m2 and for the central region three values for the 
permeability 2K  are considered, 21 KK =2, 21 KK =10 and 21 KK =103. 
 
Table 2 - Summary of the cases analyzed. 
 

Case # φ  1K  (m2) 21 KK  difD  (m2/s) 

1 0.2 10-7 2 10-4 

2 0.2 10-7 10 10-4 

3 0.2 10-7 1000 10-4 
 

The fluid properties are given in Table 3. 
 
Table 3 Fluid properties. 
 

ρ (Kg/m3) 1000.0 
µ (N s/m2) 10-3 

 
The initial and boundary conditions for the problem are given as follows: 
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c) 

Figure 2 - Concentrations after 800 days continuous injection of tracer. a) 21 KK = 2 ; b) 21 KK = 10 ; 
 c) 21 KK =103. 

 
- For the momentum equation: 
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- For the concentration equation: 
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Figure 2 shows the results for the tracer concentration fields for the three cases considered after 800 days 

continuous tracer injection. Figure 2 a shows a high penetration of the tracer into the central region (lower permeability 
region). This is expected because the permeability ratio for this case, 21 KK =2, is not so high, approaching the 
homogeneous situation ( 21 KK =1). 

For the cases 2 and 3, Figures 2 b and c show a quite different behavior. For case 3, for instance, where the 
permeability ratio, 21 KK =103, represents an extreme heterogeneity, there is almost no penetration of the tracer in the 
central region. 

Figure 3 shows the evolution of the tracer concentration front for several time intervals after the beginning of tracer 
injection.  
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Figure 3 - Normalized Tracer Concentration along the south border (y=2.34m). 21 KK = 10. 
 

The results shown in Figure 3 may present some degree of numerical dispersion for the tracer concentration front. 
As is well known, numerical dispersion may lead to wrong predictions for the tracer breakthrough time and will be 
addressed next. In order to assess the influence of the grid refinement and the numerical scheme on the concentration 
front shape, a simple geometry consisting of a channel 300m long and 1m wide was used. At the channel inlet a uniform 
concentration distribution was assumed and on both sides of the channel symmetry boundary conditions were used. The 
channel was filled with a porous medium with φ =0.2 and K =10-7m2. 

Figure 4 shows the influence of the grid refinement on concentration front shape for a time t=125 days after the 
beginning of injection at x=0m. As expected, the more refined the grid the sharper the concentration front is. 
Unfortunately, this is done at the expense of computing time. A comparison of the computing time required for the 
various grids was not done because lower relaxation coefficients were necessary to obtain the solutions for the more 
refined grids, making them even more time demanding. 

Figure 5 shows the influence of the numerical scheme on the concentration front shape for three cases: a) Up Wind 
Difference Scheme (UWS); b) Central Difference Scheme (CDS); and c) Blending Scheme (50% UWS and 50% CDS). 
As can be observed the UWS introduces a great amount of numerical diffusion as shown by the spreading of the 
concentration front. On the other hand, the CDS which produces a sharper concentration front, introduces some 
numerical oscillations giving nom-realistic results as observed from Figure 5. Also shown in Figure 5 is a Blending 
Scheme, 50% UWS and 50% CDS, which produces a sharper concentration front shape without numerical oscillations. 
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Figure 4 – Grid refinement influence on the concentration front shape (Up Wind scheme). 
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Figure 5 - Concentration Front shape for three numerical schemes (64 x 5 grid). 
 
6. Conclusions 
 

The problem of a tracer injection in an oil reservoir composed of two different porous regions was solved using the 
Finite Volume method and a single computational domain. An assessment of the numerical diffusion introduced by the 
grid coarseness as well as by the numerical scheme employed (UDS, CDS or Blending), was made based on the 
solution for a simple geometry. It was verified that, for obtaining the tracer breakthrough time, both grid refinement and 
numerical scheme are very important. For the grid refinement the compromise is the computing time required for very 
fine grids. A combination of grid refinement and numerical scheme should always be considered in such kind of 
problems. 
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