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Abstract. Thermal dispersion in porous media is an import phenomenon in combustion and in steam injection systems for Enhanced 
Oil Recovery methods. Accordingly, the study of flow through porous media has gained much attention lately and advances in 
proper modeling of such flows, which includes non-linear effects, have been published. In this work, thermal dispersion tensors 
were calculated within an infinite porous medium formed by a spatially periodic array of longitudinally-displaced elliptic rods. For 
the sake of simplicity, just one unit-cell, together with periodic boundary conditions for mass and momentum equations, and 
Neumann and Dirichlet conditions for the temperature equation, was used to represent such medium. The numerical methodology 
herein employed is based on the control-volume approach. Turbulence is assumed to exist within the fluid phase and a low Reynolds 
k-ε model is used to model such non-linear effects. The flow equations at the pore-scale were numerically solved using the SIMPLE 
method on a non-orthogonal boundary-fitted coordinate system. The integrated results were compared to the existing data presented 
in the literature. 
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1. Introduction 

 Due to its great application in the industry and science, the study of the flow in porous media has received great 
attention lately and advances in proper modeling of such flows, including non-linear effects, have been published 
(Pedras and de Lemos, 2001a; de Lemos and Pedras, 2001; Rocamora and de Lemos, 2000; Pedras and de Lemos, 
2001b; Pedras and de Lemos, 2001c; Pedras et al., 2003; Pedras and de Lemos, 2003). Engineering systems based on 
fluidized bed combustion, enhanced oil reservoir recovery, combustion in an inert porous matrix, underground spreading 
of chemical waste and chemical catalytic reactors are just a few examples of such applications. In some of these 
applications the thermal dispersion in porous media is an important phenomenon, in which one has used (Hsu and 
Cheng, 1990; Kaviany, 1995; Ochoa-Tapia and Whitaker, 1997; Moyne, 1997; Quintard et al., 1997; Kuwahara and 
Nakayama, 1998; Nakayama and Kuwahara, 1999) the notion of a Representative Elementary Volume (REV, Fig. 1) for 
the mathematical treatment of governing equations. These models, based on the macroscopic point of view, lose details 
on the flow pattern inside the REV and, together with ad-hoc information, provide global flow properties such as 
average velocities and temperatures. 
 Such flows can also be analyzed by modeling the topology of the porous medium and resolving the flow equations 
at the pore-scale. This treatment reveals the flow structure at the pore-scale level and was used by (Quintard et al., 1997; 
Kuwahara and Nakayama, 1998; Nakayama and Kuwahara, 1999; Rocamora and de Lemos, 2002) to calculate the 
thermal dispersion tensors with periodic boundary condition for the mass, momentum and the energy equations. 
 The aim of the present contribution is to discuss the modeling of thermal dispersion and calculate the thermal 
dispersion tensors within an infinite porous medium formed by spatially periodic array of longitudinally-displaced 
elliptic rods. For the sake of simplicity, just one unit-cell, together with periodic boundary conditions for mass and 
momentum equations, and Neumann and Dirichlet conditions for the temperature equation, was used to represent such 
medium. Turbulence is assumed to exist within the fluid phase and a low Reynolds k-ε model is used to model such non-
linear effects. 
 The flow equations at the pore-scale were numerically solved using the SIMPLE method on a non-orthogonal 
boundary-fitted coordinate system. The integrated results were compared to the existing data presented in the literature. 
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Figure 1. Representative elementary volume (REV). 

2. Microscopic Equations 

 The following microscopic transport equations describe the flow field and the heat transfer process within a porous 
medium, where barred quantities represent time-averaged components and primes indicate turbulent fluctuations: 
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where u  is the microscopic velocity, fρ  and sρ  the fluid and solid densities, p  the thermodynamic pressure, µ  and 

tµ  the dynamic and turbulent viscosities, fT  and sT  the fluid and solid temperatures, pfc  and psc  the fluid and solid 
specific heat at constant pressure, fk  and sk  the fluid and solid thermal conductivities, k  the turbulent kinetic energy 
and ε  the dissipation of k . In the equations, kσ , εσ  and tσ  are effective Prandtl numbers, 1C , 2C  and µC  are 
dimensionless constants and 2f  and µf  damping functions. 

 In this work the use of the low Re k-ε model is justified by the fact that the turbulent flow in porous media occurs 
for Reynolds numbers (based on the pore) relatively low. To account for the low Reynolds effects, the following 
damping functions and model constants were adopted (Abe et al., 1992): 
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 09.0=µC , 5.11 =C , 9.12 =C , 4.1=kσ , 3.1=εσ . (12) 

 For the unit-cell represented in Fig. (2) and with the assumption of macroscopic fully developed uni-dimensional 
flow, the boundary conditions are given as follow: 
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on 0=x  and Hx =  periodic boundaries (momentum equation), 
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where fn  and sn  are the coordinates normal to the interface (Fig. 1) and u  and v  the components of u . 
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Figure 2. Unit-cell: a) elliptically generated grid ( 35=ba ), b) and c) Neumann boundary conditions for the 
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 The temperature boundary conditions will be presented in the next section. 

3. Thermal Dispersion Modeling 

 Using the double decomposition concept (Pedras and de Lemos, 2001a) of a general quantity βϕ  in the β  phase, 
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and following the procedure of Rocamora and de Lemos (2000) and Rocamora and de Lemos (2002), the volume 
averaging of the energy equations (3) and (9) over the REV, assuming local thermal equilibrium between the solid and 
fluid phases, namely 〉〈=〉〈=〉〈 TTT s
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where 〉〈 βϕ  is the volume average of βϕ , β
βϕ 〉〈  the intrinsic average of βϕ  in the β  phase, βϕ ′  the time fluctuation 

of βϕ , βϕi  the space deviation of βϕ , fφ  the volume fraction of fluid and sφ fφ−=1  the volume fraction of solid. 
The effective conductivity, effK , the tortuosity tensor, torK , and the dispersion tensor, disK , are defined as: 
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 If one introduces a linear relationship between the temperature deviation and the gradient of the average 
temperature, 

 〉∇〈⋅= TT ff
i b  (21) 

the tortuosity tensor (19) and the thermal dispersion tensor (20) can be rewritten as: 
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 It is interesting to point out that for a fixed macroscopic flow and temperature conditions in a periodic medium, Eqs. 
(19) and (20) show that the tortuosity and thermal dispersion tensors will be constant only if the temperature deviation 
field is periodic (repeated in each unit-cell). The deviation concept, f

i
f TTT +〉〈= , confirms that the temperature 

deviation field is periodic in a periodic medium with a constant 〉∇〈T . In this condition the temperature, fT , will 

change of 〉∇〈T  from a unit-cell to the next adjacent one, the average temperature 〉〈T  will undergo the same change 
and, therefore, the temperature deviation, f

iT , will remain the same (periodic). 
 On the other hand, if one uses the liner relationship (21) and calculates the tortuosity and thermal dispersion tensors 
via Eqs. (22) and (23), an equation for the fb  vector is necessary (for details concerning its derivation, see e.g. 
Kaviany, 1995). This equation is independent of the temperature, i.e., the fb  vector depends only on the flow field and 
morphology of the medium and consequently tortuosity and thermal dispersion tensors will be independent of the 
temperature imposed on the porous medium. This fact occurs due to the linear hypothesis used for the temperature 
deviation (21). To avoid the consequences of the linear hypothesis we used Eq. (20) for calculating the thermal 
dispersion tensor. 
 If the gradient of the average temperature is in the same direction of the macroscopic flow or transverse to it, only 
diagonal components of disK  remain non-zero components. In these conditions, Eq. (20) renders the longitudinal 
component of disK , 
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 In Eqs. (24) and (25) the gradients xT 〉〈∆  and yT 〉〈∆  can be calculated in two ways. The first one is using the 

Neumann boundary conditions sketched, respectively, in Figs (2b and 2c). In this case xT 〉〈∆  and yT 〉〈∆  are given as, 
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 The second way is using Dirichlet boundary conditions (Kuwahara and Nakayama, 1998 and Rocamora and de 
Lemos, 2001) for the energy equation, 

 xHxx TTT 〉〈∆−= ==0  and Hyy TT == =0  (27) 

for the xxdisK )(  calculation, and, 

 Hxx TT == =0  and yHyy TTT 〉〈∆−= ==0  (28) 

for the yydisK )(  calculation. In this case xT 〉〈∆  and yT 〉〈∆  are constants. 

4. Numerical Model 

 The governing equations were discretized using the finite volume procedure, Patankar (1980). The SIMPLE 
algorithm for the pressure-velocity coupling was adopted to correct both the pressure and the velocity fields. The 
process starts with the solution of the two momentum equations. Then the velocity field is adjusted in order to satisfy the 
continuity principle. This adjustment is obtained by solving the pressure correction equation. After that, the turbulence 
model equations and the energy equation are relaxed to update the k, ε and temperature fields. Details on the numerical 
discretization can be found in Pedras and de Lemos (2001b). 
 For a fixed flow and the Neumann temperature conditions (Fig. 2b, c) the thermal dispersion tensors were calculated 
after a sequence of converged loops on the same run. This sequence of loops is necessary for the temperature field 
development, whereas for the velocity field this is not necessary because of the periodic boundary conditions used. The 
temperature development was carried out using the outlet temperature of a loop as the inlet temperature for the next 
loop. This procedure is repeated until we have no change in the temperature deviation field. 
 In the low Re model, the node adjacent to the wall requires that 1/ ≤ντ nu . To accomplish this requirement, the 
grid needs points close to the wall leading to computational meshes of 5440 ×  nodes. A highly nonuniform grid 
arrangement was employed with concentration of nodes close to the wall. Values for xxdisK )(  and yydisK )(  were 

obtained varying the HPe fH α/|| 〉〈= u  from 010  to 310.4  and the fφ 21 Habπ−= , from 0.60 to 0.90. 

5. Results and Discussion 

 A total of twenty seven runs were carried out being twenty three for laminar flow and four for turbulent flow with 
the low Re model theory. In all runs it was used for the fluid phase a Prandtl number of 0.72 and a ratio of the solid 
phase thermal conductivity to fluid phase 2=fs kk . 
 Figure (3) presents the temperature fields calculated with the temperature boundary conditions sketched in Fig. (2b), 
while Fig. (4) presents the temperature fields in the same flow rate but using the temperature boundary conditions Eq. 
(27). In both figures, the gradients of the average temperature are in the same direction of the macroscopic flow. As will 
be shown further, in spite of the differences in the temperature fields obtained, the values of the longitudinal component 
of disK  were very similar. Furthermore, Figs. (3b and 4b) show that as the flow rate is increased the fluid phase 
temperature become uniform, due to the mixing produced in the flow. 
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Figure 3. Temperature fields calculated with the temperature boundary conditions sketched in Fig. (2b) and 

fφ 60.0= : a) HPe 10= , and b) HPe 3104 ×= . 
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Figure 4. Temperature fields calculated with the temperature boundary conditions Eq. (27) and fφ 60.0= : a) 

HPe 10= , and b) HPe 3104 ×= . 
 
 Figures (5 and 6) present the temperature fields calculated, respectively, with the temperature boundary conditions 
sketched in Fig. (2c) and with Eq. (28), which yield a gradient of the average temperature transverse to the macroscopic 
flow. In both cases, the temperature fields shown are very close each other and, consequently, the transversal component 
of disK  were very similar. Figures (5b and 6b) show the same behavior of Figs. (3b and 4b), i.e., as the flow rate is 
increased the fluid phase temperature become uniform, due the mixing produced in the flow. 
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Figure 5. Temperature fields calculated with the temperature boundary conditions sketched in Fig. (2c) and 

fφ 60.0= : a) HPe 10= , and b) HPe 3104 ×= . 
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Figure 6. Temperature fields calculated with the temperature boundary conditions Eq. (28) and fφ 60.0= : a) 

HPe 10= , and b) HPe 3104 ×= . 
 
 The longitudinal component of the thermal dispersion tensor is shown in Fig. (7) as a function of Peclet number and 
for different porosities. The results present good agreement when compared with the data of Kuwahara and Nakayama 
(1998) and Rocamora and de Lemos (2001), for square and cylindrical rods, respectively. The present results show that 
the use of different temperature boundary conditions (Fig. 2b and Eq. 27) yields very little differences in the values of 
the longitudinal component. Furthermore, for the longitudinal component, different morphologies (elliptical, square and 
cylindrical) also change very little its values. Its overall dependence on the Peclet number was 

fxxdis kK )( 6.1Pe056.0 H= , showing the usual behavior of ( n
HPe~ ) as expected. The power dependence on the Peclet 

number of about 1.6 was lower than the square dependence of Taylor dispersion in a tube. This behavior can be ascribed 
to the turbulence, which contributes to the enhancement of the transverse dispersion. The results of Quintard et al. 
(1997) show a dependence of about 1.3 for a staggered arrangement of cylinders and spheres and 1.7 for in-line 
arrangement. Their work was restricted to Stokes’ flow and the value of 1.3 was ascribed to the enhancement of the 
transversal dispersion in the staggered arrangement. 
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Figure 7. Longitudinal thermal dispersion: a) fφ 60.0=  and b) overall results. 
 
 The transverse component of the thermal dispersion tensor is shown in Fig. (8) as a function of Peclet number and 
for different porosities. As can be observed, the use of different temperature boundary conditions (Fig. 2c and Eq.28) 
yields very little differences in the values of the transverse component. On the other hand, for the transverse component, 
different morphologies (elliptical, square and cylindrical) yield great differences in its values. Its overall dependence on 
the Peclet number was fyydis kK )( 88.04 Pe1029.2 H

−×= . As expected, this component is much smaller than the 
longitudinal component for large Peclet numbers. 
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Figure 8. Transverse thermal dispersion: a) fφ 60.0=  and b) over all results. 
 
 In this work it was talked about three types of approaches to calculate the thermal dispersion tensor. All of them are 
valid and the question that arises is the validity of using a unit-cell to represent a periodic porous medium in thermal 
problems. This question will be analyzed using a control volume around the unit-cell as sketched in Fig. (9) and, for a 
steady state flow and neglecting the viscous dissipation, verifying how the thermal energy enter or exit the unit-cell. 
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Figure 9. Two types of unit-cell that represent the same periodic porous medium. 
 
 Figure (10a) shows the average temperature profile for a periodic porous medium with a difference of temperature 
imposed from north to south. Independently of the flow rate the gradient of the average temperature will be a constant 
and transverse to the flow. The energy enters the unit-cell through the north face and exits through south face, not 
accumulating energy. In this case the problem is “thermally periodic” and the unit-cell, with any of the three types of 
thermal boundary conditions here discussed, could represent this problem. 
 In Fig. (10b) we have other case that could be represent by a unit-cell with any of the three types of thermal 
boundary conditions here discussed. In this case the flow is at rest, the gradient of the average temperature will be a 
constant and the energy enters the unit-cell through the west face and exits through east face, not accumulating energy. 
On the other hand, if the flow is not at rest (Fig. 10c) it will enter the unit-cell through the west face with some 
temperature 1T  and will exit the unit-cell through the east face with a temperature lower than 1T , i.e., the flow loses 
energy. Using the control volume sketched in Fig. (9b), this energy can go out of the unit-cell only through north or 
south faces and, therefore, this problem will not be “thermally periodic” in the y direction. Actually, the problem as 
sketched in Fig. (10c) could not occur. 
 The calculation of the longitudinal thermal dispersion, xxdisK )( , using the unit-cell and boundary conditions as 
sketched in Fig. (2b), was motivated by the representation of a problem that could occur in a real situation. This problem 
is described in Fig. (10d) where a uniform heat flux is imposed on north and south faces. Certainly this problem is not 
“thermally periodic” in the y direction, but after the thermal entry length it will be “thermally periodic” in the x 
direction. The temperature field will increase linearly with x along the medium and only in the centerline the gradient of 
the average temperature will be in x direction, i.e., in the central row of unit-cells, and this is the case here represented in 
the Fig. (2b). 
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Figure 10. Periodic porous medium: a) flow at rest or convection and difference of temperature from north to south, b) 

flow at rest and difference of temperature from west to east, c) convection and difference of temperature 
from west to east, and d) Neumann boundary conditions on north and south faces. 

 

6. Conclusions 

 The modeling of thermal dispersion was discussed and its implication in the determination of the longitudinal and 
transverse components of the thermal dispersion tensor was presented. Results of thermal dispersion components 
calculated for a periodic porous medium represented by a unit-cell with Neumann and Dirichlet boundary conditions for 
the energy equation and periodic boundary condition for mass and momentum equations were presented and compared 
with data found in the literature. The use of a unit-cell to represent a periodic porous medium in thermal problems was 
discussed, showing that this approach is valid when the problem in consideration is “thermally periodic” in all 
directions. 
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