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Abstract. The objective of this work is to describe the positional control of an unconstrained multi-link flexible structure. The 
experimental apparatus was designed to be representative of a flexible space structure such as a satellite with multiple flexible 
appendages. In this work we describe the analytical modeling and the simulation of a position control using a Linear Quadratic 
Regulator using Kalman State Estimator. 
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1. Introduction  
 

This paper presents the analytical modeling of a multibody flexible structure prototype  and the simulation of its 
position control using LQR design  using Kalman state estimator. The experimental setup, show in the Fig. (1), was 
assembled at the  Dynamics Laboratory with the aim to investigate the dynamics and the position control of flexible 
structures representative of aerospace structures such as a satellite with flexible appendages. The experimental setup is 
composed of two flexible aluminum beams coupled to a central rigid hub. The hub is mounted on a steel disc supported 
on a gas bearing, in an attempt to minimize the static friction and to simulate the structure’s slew motion in space 
conditions. The steel disc is linked to a brushless DC motor that gives the necessary excitation to the structure. The 
direct-drive torque actuation avoids the introduction of spurious non-linear effects such as dry friction and backlash in 
the gear transmission system. 

The instrumentation and measurement subsystems consist of collocated and non-collocated sensors and their 
respective signal conditioning systems. An accelerometer, is used to monitor the vibration displacement of the beam tip. 
Two full strain-gage bridges are used to measure the elastic deformation at two known positions along the arms. The 
collocated sensors consist of a tachometer and a potentiometer both fixed to the motor axis. 

A schematic view of the experimental set up is shown in Fig (1). 
 

 
 
Figure 1- Experimental Setup 
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2. THE ANALYTICAL MODEL 
 

The generalized Lagrangean approach is used to derive the analytical model of the unconstrained multi-link flexible 
structure, where the unconstrained characteristic results from the natural motion without external influences, i.e, all the 
structure is allowed to vibrate and its solution involves both the inertia of the rigid and the flexible parts (Barbieri & 
Özgüner, 1988). In this study we assume that the elastic deformation of the beams are symmetric with respect to the 
hub, consequently it is necessary to model only the elastic displacement of one of the arms (Junkins and Kim, 1993). 
The position of a generic point on the beam is written on a local body fixed coordinate system, as shown in the Fig.(2). 
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Figure 2. Coordinate system 

 
The kinetic energy of the system is the sum of the kinetic energy of the hub, the arms and the tip mass (boundary 

elements). 
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where Ihub is the hub inertia, ρ is the linear mass density of the beam, L is the appendages length and mt is the mass of 
the accelerometer located at the tip of the beam. 

The potential energy of the distributed parameter system do not take into account the shear deformation and the 
rotary inertia of the beam and is given by the following expression: 
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The Lagrangian of the system, is written as the total kinetic energy minus the potencial energy of the structures and 

the nonconservative work done by the applied torque are respectively: 
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From Góes et al. (1998) and Negrão (1998 and 1999) the following matrix equation is obtained for the first three 
assumed modes: 
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where: 
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)x(jφ  are the eigenfunctions of the hub-beam system.  

 
Now it is simple to get the state-space representation of the system in the form: 

uBAxx +=&  (12) 
 
where the A e B matrix are: 
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We define the observation matrix, C, that describe the measured signals in terms of the state variables. This matrix 

is obtained from the model of the available sensors. The accelerometer is located at the free tip of the beam and, its 
signal is conditioned by a pre-amplifier and a double integrator filter with a global coefficient of sensitivity given by Ga, 
in V/cm units. Thus, we can write: 
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Rewriting the integrated accelerometer equation, as in (Negrão, 1998): 
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The potentiometer provides a voltage proportional to the angular position of the hub, . The full strain-

gage bridge gives a signal proportional to the axial strain of the beam (

)(t
p

Gpe θ=

sε ), which can be related with the elastic 
deformation y(x, t), at the point were it is located by the Eq. (16),  
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where e is the thickness of the beam. The strain-gage sensor is rewritten as: 
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where x1 is the position where the sensor is located on the beam. The tachometer gives a signal proportional to the 
angular velocity of the hub, , which combined with the other sensor equations, gives the observation vector  )t(te θ&=

xCy .= , where: 
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3. THE ANALYTICAL TRANSFER FUNCTIONS 
 

To obtain the analytical transfer functions, for the unconstrained multi-link flexible system, we used the physical 
parameters listed in table 1, 
 
Table 1. Model parameter of the unconstrained flexible beams 

 
 

Aluminum density ρ 2.7950 103 Kg/m³ 
Aluminum Young's modulus E 6.8900 1010 N/m² 
Beams width Eb 4.1200 10-3 M 
Beams height Hb 8.0780 10-2 M 
Beams length L 9.7150 10-1 M 
Beams cross-section area A 3.3281 10-4 m2

Beams moment of inertia I 4.7070 10-10 m4

Beams mass moment of inertia Ib 2.8430 10-1 Kg m2

Hub mass moment of inertia Ihub 7.6749 10-1 Kg m2

Hub radius r 9.0000 10-2 M 
 

Applying the Laplace transform into Eq. (12) with zero initial conditions and using the model parameters listed in 
Tab. (1), we can obtain the analytical transfer functions for each sensor.  
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4. Position  Control  
 

Position control of mechanical systems with structural flexibility has been an important research topic in recent 
years. We show  a simulation results of a position control using LQR design. Consider the  system: 
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The solution of the LQR problem is to minimize  J  with respect to the control input u(t)  and J represents the 

weighted sum of energy of the state and control and Q and R represent respective weights on the different states and 
control channels. The problem is a solution of the algebraic Riccati equation  : 

01 =′−++′ − PBPBRQPAPA  (22) 
and the optimal control law  is: 
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where  (24) PBRk ′= −1

The implementation of the state feedback law requires the state vector x  available for measurement and feedback. 
Unfortunately, that is not the case. The Optimal Observer Design  Kalman-Bucy Filter was utilized for this purpose. 

 
Consider the system in Eq.(21) with the additional random terms ω and ν: 
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Where ω represents random noise disturbance input and ν represents random measurement noise. 
Assuming that ω and ν are both white Gaussian zero-mean stationary processes with know covariances, we have: 
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The goal is to estimate x(t), based on noise-corrupted measurement. On this paper, it was used the Kalman-Bucy 
Filter approach. That is means to minimize the following cost function: 
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That is, the goal is to minimize the variance of the estimated state less the real plant state. Under these assumptions, 
the optimal estimator (Kalman-Bucy filter) is given by: 
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Where Σ is found from: 
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This is shown in the schematic below: 
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Figure 3. LQR Control Scheme with optimum state observer 



 
Using a step reference of  1 [Volts], the results of the  position control using LQR design with Kalman State 

Estimator are illustrated in Fig. (4)-(7): 
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Figure 4. Angular position for a step reference Figure 5. Angular velocity for a step reference 
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Figure  6. Transversal deformation  for a step reference Figure  7. Tip acceleration for a step reference 
 
 

As one can see in the Figures (4) and (7), that the positional control is efficient. The final position was reached in 
10 seconds. This was the best performance that could be achieved without excitation of the higher vibrations modes of 
the beam considering noise-corrupted measurement. This work is still in progress, and we are implementing an 
experimental  real-time control using the platform program MATLAB/ SIMULINK. We also intend to implement 
others control strategies including the LQG/LTR, and Hinfinity which due to the system inaccuracies, could be proven to 
be more robust to the unmodelled dynamics. 

 
5. CONCLUSIONS 
 

This paper reports preliminaries results obtained with an experimental apparatus with multiple flexible bodies. The 
model was derived using the Lagrangean approach and its discretization was done with the Assumed Modes Method as 
defined in Negrão(1999). The results in  control position using LQR design using Kalman State Estimator shown that 
the controller reach the reference position in 10 seconds. This work is still in progress and using MATLAB to 
implement experimentally this control as well as we intend to implement other control strategy, such as robust control. 
Due to the system inaccuracies a robust control synthesis like LQG/LTR  and Hinfinity should be more suitable for this 
system (Soares, Goes and Souza, 1996). 
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