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Abstract. The present work describes the continuation of the validation process of a computational code which is able to simulate 
three-dimensional compressible flows with turbulent transport effects over realistic configurations of CTA/IAE’s rockets. Systematic 
mesh refinement studies are performed in order to determine the optimal conditions for each case. New mesh topologies are created 
in an attempt to provide better grids for supersonic flow situations. Simulations are performed with the objective of contributing to 
the validation effort of the numerical simulation tool under development. 
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1. Introduction 
 

Computational Fluid Mechanics (CFD) is an extremely important subject in present Aerodynamics. As described 
by Fletcher (1988), the mathematical modeling of the great majority of real aerodynamic phenomena comprises a 
system of nonlinear partial differential equations which is of difficult analytical manipulation. Up to the emergence of 
the first computational tools, these difficulties were overcome exclusively with exhaustive use of flight and wind 
tunnels tests. 

However, Aerodynamics has reaped the benefits of computer developments over the past decades, as shown in 
Fletcher (1988). The present CFD tools are very flexible and are largely used in all aerospace industries due to the large 
savings they represent. Depending on the focused circumstances, one should give up of some irrelevant elements and 
concentrate all the efforts on the most interesting aspects to the result. Hirsch (1994) and Azevedo (1993) deal, among 
others subjects, with the question of simplifying the mathematical models to find more satisfactory solutions in specific 
cases. 

The main variables involved in this case analysis are, besides the body’s geometry, the Mach and Reynolds 
numbers. The first is directly related to the flow compressibility, while the second covers parameters such as velocity, 
density, viscosity and the vehicle’s dimension. 

After selection of the theoretical model, it is indispensable to define the physical domain where the flows take 
place, determining the boundary conditions to the problem. In order to treat the flows numerically, its necessary to 
discretize the physical domain defining point locations over a computational mesh where the calculations are 
performed. This step, as stated by Fletcher (1988) and confirmed by the group at CTA/IAE, is extremely important for 
solution accuracy and convergence. Cases later discussed will make this more evident. 

As presented by Marques (2002), together with the evolution of the projects performed at CTA/IAE, came the 
increasing need of aerodynamic parameters, mainly concerning the vehicles developed in that center. Nevertheless, the 
use of CFD tools has always been limited by the necessity of development of proper computational codes and 
computational resources compatible to the extension of the work. Hence, a progressive approach concerning the 
complexity was adopted in the development of such tools at CTA/IAE and ITA. Therefore, the stages described in the 
listed references were followed (Azevedo, 1990; Azevedo et al., 1995 and 1997; Fico and Azevedo, 1994; Bigarelli et 
all. 1999; Cruz, 2000 and Bigarelli; and Azevedo, 2002). After the most recent improvements in the code along the last 
two years, the actual tool solves three-dimensional problems with a Navier-Stokes formulation including viscosity and 
turbulent transport effects, as well as advanced convergence acceleration techniques, as stated by Bigarelli (2002). 

Every numerical tool developed to obtain approximate solutions for mathematical problems must be validated. This 
process consists in extensive comparisons of results with independent computations available in the literature and 
experimental data. Although the long term objective is to achieve results which are similar to those well-known data, 
the most important aspect of this process to an engineer is to know the limitations of the tool he/she is using. This will 
guarantee the adequate utilization of the code and even make improvements possible. Hence, the main objective of the 
present work is to contribute towards the validation of the recently added capabilities to this CFD code under 
development. In particular, the work is concentrated on the definition of better mesh topologies for the problems of 
interest.  
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2. Theoretical Formulation 
 
2.1. Mathematical Formulation 
 

Based on Marques (2002), the actual code solves the thin layer approximation for three-dimensional, compressible, 
turbulent flows, based on the Reynolds averaged Navier-Stokes equations. These equations are presented in the 
conservative form for generalized curvilinear coordinates by Marques (2002) as follows 
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where Q  is the conservative variables vector, given by Eq. (2). 
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The inviscid flux terms E , F  and G are defined as 
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and the viscous flux terms vE , vF  and vG  as 
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In Eq. (4), ρ is the density; u, v and w are the Cartesian velocity components and e is the total internal energy per 

unity of volume. Considering the perfect gases equation, pressure can be written as 
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where ei is the specific internal energy and γ is the ratio of specific heats at constant pressure and constant volume. The 
components of the viscous stress tensor are described by the relations 
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The terms above referenced as βx, βy and βz are given by 
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The contravariant velocity components are defined as 
 

t x y zU u v wξ ξ ξ ξ= + + + , 
t x y zV u v wη η η η= + + + , 

t x y zW u v wζ ζ ζ ζ= + + + .              (8) 
 
The qx, qy and qz amounts are the heat flux components, given by 
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In the present work, the Cartesian coordinates system adopted is the one with the x-axis in the vehicle’s 

longitudinal direction, set as positive in the downstream sense. The others two coordinates complete the system 
according to the right-hand rule. The generalized curvilinear coordinate system is defined by ξ as the body longitudinal 
direction, η as the direction normal to the solid wall and ζ as the circumferential direction. This system is obtained by 
the following coordinate transformation 

 
tτ = , 
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The Jacobian of this transformation is given by Eq. (11), which is valid for the three-dimensional case 
 

1( )J x y z x y z x y z x y z x y z x y zξ η ζ η ζ ξ ζ ξ η ξ ζ η η ξ ζ ζ η ξ
−= + + − − − .        (11) 

 
The ξx, ξy, ξz, ξt, ηx, ηy, ηz, ηt, ζx, ζy, ζz e ζt are the metric terms, while xξ, yξ, zξ, xη, yη, zη, xζ, yζ, zζ, xτ, yτ e zτ are 

the inverse metric terms. These first terms are 
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Developing the equations above cited and neglecting the crossed derivatives terms (Cruz, 2000), one can rewrite the 

viscous flux vectors as 
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The Mach number, cited previously, is given by 
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where U∞ and a∞ the freestream flow and sound velocities, respectively. Moreover, the other very important parameter 
Reynolds number is defined as 
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where ρ∞  and µ∞ are the freestream density and the viscosity coefficient and l0 is the reference length, which is, in the 
present work, the vehicle’s diameter at the outflow boundary region. 

 
2.2. Numerical Formulation 
 

The basic equations have to be discretized for numerical treatment. The spatial derivatives are discretized with a 
centered difference scheme, while the time derivatives are represented by a five-stage Runge-Kutta time marching 
method of second order of accuracy, as described by Cruz (2000) and Azevedo (1989). As usual with centered 
difference schemes, artificial dissipation terms are added to maintain stability in nonlinear cases. 

In the present code, the artificial dissipation terms are implemented modifying the convective fluxes as follows: 
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In Eqs. (16), the terms di ± 1/2, j, k , di, j ± 1/2, k e di, j, k ± ½  represent the artificial dissipation components in the i, j and k 
directions, respectively. Equation (1), after complete space discretization, can be rewritten as: 
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where the residue RHS is given by: 
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and ∆ξ = ∆η = ∆ς = 1 for the case of general curvilinear coordinates. 

According to a multi-stage Runge-Kutta method, the time-marching is given by 
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In Eqs. (19), the subscripts n and n+1 indicate the beginning and the end of the n-th time step, l and l-1 represent the 
Runge-Kutta stage and αl is the constant of l-th stage. The values used in the present paper are α1 = 1/4, α2 = 1/6, α3 = 
3/8, α4 = 1/2 and α5 = 1. The local time step is evaluated by 
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where the CFL number is kept constant throughout the computational domain. The characteristic speed of propagation 
of information in the flow, ci,j,k, is calculated here as 
 

, ,i j kc q a= + , 2 2 2q u v w= + + .             (21) 
 
As Cruz (2000) described, the artificial dissipation model used in the code is based on the one implemented by 

Turkel and Vatsa (1994). This is a non-isotropic scalar model, where the coefficients of the artificial dissipation 
operators terms are functions of the spectral radii of the flux Jacobians matrices. It is also nonlinear and allows the 
switching between second and fourth difference terms, which is very important in the aim of detecting and adequately 
capturing shock waves present in the flow. In the longitudinal direction, the artificial dissipation components can be 
written as: 
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In Eq. (22), the expressions ε (2) e ε (4) are functions of νi, given by: 
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The bigger the pressure gradient, the bigger is the νi value, thus turning on the second difference terms and canceling 
out the fourth difference ones. This is important for correctly capturing shock waves (see, for instance, Azevedo et. al., 
1995, and Turkel and Vatsa, 1994). On the other hand, in smooth regions of the flow, νi is very small and the second 
difference terms are turned off, hence maintaining second-order accuracy. The terms k (2) e k (4) are constants and the 
values adopted for them are those recommended. Hence k (2) e k (4) are l/2 e l/64, respectively.  The W vector is evaluated 
as follows 

 
W [0, 0, 0, 0,  ]TQ p= + .             (24) 
 

Analysing Eqs. (25), (2) and (5), one can conclude that the model adopted is coherent to the fact that the total enthalpy 
must be conserved in Euler flows with stationary downflow conditions. 

The scaling factor related to the longitudinal direction is defined as 
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where λξ  is evaluated as a function of the flux Jacobian matrices radii in the three directions as follows 
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The spectral radii for the three directions are given by 
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The artificial dissipation components in the others directions are obtained in a completely analogous form. 
 
2.3. Turbulence Models 

 
According to Bigarelli and Azevedo (2002), the turbulence models chosen for the numerical code are based on the 

Boussinesq hypothesis, which means that the dynamic viscosity coefficient should be replaced by an effective viscosity 
coefficient which is given by the sum of laminar and turbulent viscosity coefficients. Mathematically, one could write 

 
µ = µL + µT,               (28) 

 
where the L and T subscripts represent laminar and turbulent coefficients, respectively. Hence, two models originally 
conceived to aerospace use were selected for the discussed work. One of them is a one-equation model, proposed by 
Spalart and Almaras (1994), while the other is the SST two-equation model implemented as proposed by Menter 
(1994). 

 
2.4. Convergence Acceleration Techniques 

 
It was necessary to add to the CFD tool some convergence acceleration techniques, due to the difficulty of 

obtaining convergence in very refined computational meshes with the present explicit time-marching scheme. Besides 
the variable time step, given by the definition of the CFL number, multigrid and implicit residual smoothing (IRS) 
procedure are implemented. 

The multigrid technique can provide great convergence acceleration in numerical methods, as shown by Wesseling 
(1995). The mathematical formulation of this method consists basically in eliminating low frequency errors for very 
refined meshes solving the problem with coarser ones.  This is based on the knowledge that usual time integration 
methods are more efficient eliminating high frequency errors of a computational mesh, as the error frequency content of 
a mesh cell is inversely proportional to its volume (Strauss and Azevedo, 2000). The multigrid algorithm adopted in the 
present code is called full approximation storage (FAS), implemented by Fletcher (1988), which is the recommended 
method for nonlinear problems. It is based in the exchange of both solution and residue among different mesh levels. 
Besides, it must be supported by a good time-marching procedure to be effective (Strauss and Azevedo, 2000). 

The driving idea of the residue smoothing consists basically of obtaining the residue average of neighboring cells in 
a certain point, increasing the information exchange among them. In other words, this is a simplified way of adding 
some implicit relationship in the residue field. This procedure allows the use of higher CFL numbers for the 
simulations. These averages can be evaluated implicitly or explicitly. The second option is simpler because it uses only 
known residue values of the neighboring cells involved. The other, on other hand, requires unknown residue values of 
the neighboring cells, what makes it more expensive, although more efficient. In the present work, a simpler and 
effective implicit scheme was chosen, as Azevedo (1992) described. 
 
3. Results and Discussion 
 
3.1. Boundary Conditions 

 
The traditional meshes used in computational simulations with the CFD tools of configurations of interest to IAE 

are basically axisymmetrical and C-shaped, as indicated in Fig. 1. The evolution of the work performed at CTA/IAE 
demanded a three-dimensional mesh that was obtained with the revolution of the two-dimensional mesh around the 
symmetry axis. In earlier work, it was chosen to build meshes that represent only half the central body, in order to save 
computational effort. This was possible due to the symmetry verified in relation to the pitching plane, even in cases with 
the angle of attack different from zero.  In order to take advantage of that, it was necessary to add two azimuthal planes 
which contained symmetric points to its correspondents on the other side of the symmetry plane in each configuration. 
The determination of boundary conditions described by Cruz (2000) used most of what had been developed for two-
dimensional meshes. This procedure is demonstrated in Fig. 2. 
 



 
 

Figure 1. Two-dimensional 155x55 points mesh around 
SONDA III-A rocket. 
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Figure 2. Frontal view of a three-dimensional mesh, 
evidencing the additional azimuthal planes.

3.2. Mesh Refinement Analysis 
 

The mesh refinement analysis was basically focused in the determination of the number of mesh points in the 
longitudinal and normal directions of the body. Previous work in the group at CTA/IAE had already established that 21 
points are sufficient for the circumferential direction. It is very important to remember that such an analysis was 
performed with the laminar viscous formulation, without taking into account the turbulent transport phenomena added 
later to the code. Cases with this more complex formulation demand much more refined meshes. Simulations were, 
then, performed considering flows around the SONDA III-A rocket with freestream Mach number 2.0, angle of attack 4 
deg. and Reynolds number 3x107. Initially, two configurations of mesh were tested: one with 101x34x21 points and the 
other with 101x55x21 points (these numbers refer to the number of grid points in the longitudinal, wall normal and 
circumferential directions, respectively). The mesh with 34 points in the normal direction was readily discarded due to 
the large discrepancy in the estimate of the boundary layer thickness comparatively with the mesh with 55 points in that 
direction. 

The following step was to make an analogous experience in order to determine a proper number of mesh points in 
the longitudinal direction. The possibilities that have already being tested were grid with 101 and 155 points. With a 
proper control on the distribution of the points, it was possible to verify very similar results for both configurations. 
Results in terms of pressure contours are shown in Fig. 3, while Fig. 4 contains the pressure coefficient distribution 
along the vehicle. This makes clear that, with a laminar formulation, the differences between these results are 
negligible, except for a few points emphasized in Fig. 4. These particular points are located in the regions in which the 
largest variations occur due to abrupt phenomena. Therefore, within certain limitations, the 101 point mesh can be 
considered a good compromise demanding much less computational effort than the 155 point mesh. 
 

 
 

Figure 3. Pressure contour in case Sonda-5 (Table 1) 
with 4 deg. of angle of attack. 
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Figure 4. Pressure coefficient distribution for the same 
conditions. 

 
3.3. Chosen Configurations 
 

As a continuation of an effort to validate the CFD tools developed at CTA/IAE, the present work tried to follow a 
previously determined simulation schedule with cases of interest. Cruz (2000) presented the complete simulation 
schedule firstly conceived, but Table 1 contains only the part of interest to this work. 
 



Table 1. Problems selected for simulation and their respective priority. 
 

Case Geometry/Vehicle Mach Attack Angles Priority 

Sonda-4 SONDA III-A 1,25 0, 2, 4 and 6 deg. High 

Sonda-5 SONDA III-A 2,00 0, 2, 4 and 6 deg. High 

Sonda-6 SONDA III-A 3,00 0, 2, 4 an 6 deg. High 

HEM-1 Hemisphere-cilinder 0,90 0 Medium 

HEM-2 Hemisphere-cilinder 2,00 0 Medium 

HEM-3 Hemisphere-cilinder 5,00 0 Medium 

HEM-7 Hemisphere-cilinder 0,90 2, 4 and 6 deg. Low 

HEM-8 Hemisphere-cilinder 2,00 2, 4 and 6 deg. Low 

HEM-9 Hemisphere-cilinder 5,00 2, 4 and 6 deg. Low 
 
A hemisphere-cilinder body is a geometrically simple problem for which many results are found in the specialized 
literature. The priority established is related to the lack of time to accomplish completely the schedule determined. All 
simulations were performed with Reynolds number 3x107. In the interest of brevity, the authors do not include here 
solutions for all of these cases. However, a calculation which is indicative of the quality of the results obtained in these 
simulations, without the inclusion of a turbulence model, can be seen in Figs. 3 and 4, which corresponds to the Sonda-
5 case in Table 1. 
 
3.4. New Mesh Topology Creation 
 

Among the chosen configurations, the most important ones are in the supersonic regime. However, the mesh 
topology presented in Fig. 1, developed and used by the CTA/IAE research group, for obvious practical reasons, 
attempts to cover as many different situations as possible, including subsonic, transonic and supersonic conditions. For 
this reason, as emphasized by Marques (2002), a new mesh geometry was created aiming to serve exclusively to 
supersonic cases. The interesting phenomena in this kind of situation are situated after the shock wave detached from 
the body’s nose. Hence, the new topology tries to concentrate the points in this region, without increasing the total 
number of mesh points and, consequently, the computational effort. This is obtained forcing the external boundary of 
the mesh to be parallel to the shock wave. After a series of simulations, the proper model was chosen, as described by 
Marques (2002). The resulting topology is presented in Fig. 5. The savings introduced by this modification showed to 
be especially important later, when the turbulence models were implemented demanding a further refinement of the 
mesh. 

Another mesh model also had to be generated to create proper conditions for simulations over the hemisphere-
cilinder configuration. Due to the lack of time, only a grid adequate for supersonic simulations was developed for this 
configuration. Figure 6 contains a sample of this mesh. 

For illustrative purpose, the result in terms of Mach number contours for the Sonda-4 case, indicated in Table 1, 
with zero angle of attack using the supersonic mesh topology is shown in Fig.7. 

 
 

 
 

Figure 5. Supersonic case mesh topology. Grid over 
SONDA III-A rocket. 

 
 

Figure 6. Mesh around a hemisphere-cilinder 
configuration, including a detail of the nose region. 



 
 

Figure 7. Mach number contour in case Sonda-4 with 
zero angle of attack. 

 
 

Figure 8. View of the mesh refinement in the nose 
region. 

 
3.5. Simulations with Turbulence Models 
 

The turbulence models previously cited were added to the numerical code by Bigarelli (2002) during the 
development of the work of Marques (2002). Thus, in order to take advantage of this evolution, the initial goals were 
slightly altered to include simulations using the newer formulation at that time. However, in this attempt to obtain more 
complete e reliable results with the new tool applied to the created mesh topologies, certain difficulties never 
experienced before by that group emerged. This occurs due to the behavior of the code in very refined regions of the 
mesh, as the nose of the body 

To work properly, the new formulation requires a relatively well-refined mesh, with about 85 to 89 points in the 
normal direction. These additional points, together with the concentration of points in new meshes, resulted in very 
stretched cells in the body’s proximities, mainly at the nose. Figure 8 shows a sample of this in the SONDA III-A 
rocket. In some cases, the cell length may be a million times greater than the width. This implies in great challenges to 
achieve convergence. Figure 9 demonstrates the convergence history in the HEM-2 case with 60,000 multigrid cicles 
(considered here as iterations), with a very low CFL number of 0.17. These convergence problems were solved with the 
implementation of the convergence acceleration techniques described in the paper. Figure 10 contains a sample of 
solution in terms of Mach number contour with these capabilities fully implemented and Figure 11 the corresponding 
convergence history. This simulation was performed for the VLS configuration because there was more experimental 
data available. The presented case considers a freestream Mach number 2.0 and 4 deg. of angle of attack. At the present 
time, the validation effort continues addressing the configurations indicated in Table 1. 
 

 
Figure 9. Convergence history for HEM-2 case. 

 
 

Figure 10. Mach number control around the VLS rocket 
with M∞ = 2.0 and 4 deg. of angle of attack. 

 
 
 
 
 

 

 

Figure 11. Convergence history for the simulation with the turbulence model 
and convergence acceleration techniques. 



 
 
4. Conclusion 
 

This work presents results which contribute to the validation of a CFD simulation tool currently under development 
at CTA/IAE and ITA, aimed at the solution of high-speed aerospace flows. Some new capabilities have been recently 
added to this code and it is important to emphasize the addition of turbulence models to the code, as described by 
Bigarelli and Azevedo (2002). These increase the range of phenomena covered by the CFD tool. 

Yet, new mesh topologies are necessary to accomplish the overall development work of which this paper is a part. 
This task was successfully achieved resulting in new mesh models presented in section 3.4. The simulation schedule 
presented in section 3.3 could not be completely executed until now for the turbulent case due to unexpected difficulties 
that emerged during the validation process. Nevertheless, this drove the implementation of advanced convergence 
acceleration techniques, which made the code more robust. Therefore, the paper has presented results of an on-going 
work which, however, has already indicated the usefulness of the implemented capability for the flow simulation of 
interest for aerodynamic analysis of launch vehicles and sounding rockets. 
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