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Abstract. A mathematical model for the simulation of the thread dyeing process in bobbins is proposed. This model is based on the 
laws of mass and chemical species conservation, being utilized the Method of Volume Averaging.  The model is developed in the 
microscale, where are found the textile fibers in contact with the dyeing bath contained into the micropores. The obtained equation 
in the microscale has all the relevant information, which allows carrying these information to the upper scales modeling.  In this 
work the closure problem is also modeled, making possible to calculate the effective diffusion coefficient, without the necessity of 
correlations or empirical data. 
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1. Introduction 
 

The textile dyeing can be made directly in the fabric or in the threads. The dyeing of threads before weaving 
provides higher quality to the final product, when compared to the traditional process.   

The threads dyeing process in bobbins is characterized by the continuous flow of the dyeing bath through the 
bobbins until the exhaustion of the dye, as presented by Cegarra (1992). 

Dyeing equipments have been designed for short runs and even so the quality specifications must be the same or 
higher with a low cost. With the recent increase in worldwide environmental issues, the environmental protection 
regulations for textile processing and ecological demands on dyeing system are growing, so, developments in 
equipments, dye chemistry, and a review of processing, techniques and procedures can lead to a successful solution of 
the problems faced by the current dyeing industry, as discussed by Hyde et al. (1996). 

In this work a study of the packed thread dyeing process in bobbins is made, with several types of dyes, such as 
acid, basic, direct, reactive and other dyes. A mathematical model for the simulation of the thread dyeing process is the 
main objective of this work, where the model is based on the laws of mass and chemical species conservation. The 
Method of Volume Averaging, described by Whitaker (1985) is utilized for the development of the model from the 
microscale, where the textile fibers are in contact with the dyeing bath contained into the micropores, to the macroscale, 
that is the dyeing equipment with thread bobbins and the dyeing bath. 

The effective transport properties in two-phase periodic media are of considerable interest, because of this, 
theoretical derivations of the effective parameters have also appeared in many ways. The Method of Volume Averaging 
has been applied to diffusion problems. Numerical values for the effective diffusivity in two-dimensional periodic 
medium have been derived in literature using this approach. 

Theoretical derivations of the effective diffusivity in thread bobbins are developed in this work, these theoretical 
equations are called the closure problem. The closure problem as well as the effective diffusivity depend on the 
geometric parameters and physical properties. 
 
2. Description of the thread dyeing process in bobbins 
 

The mathematical model developed in this work simulates the thread dyeing process in bobbins in a dyeing 
equipment of a textile industry.  

The dyeing equipment is shown in Fig. (1) where the dyeing bath is pumped through the bobbins. After the fluid 
reaches the support it is recycled, and then pumped again. This process is repeated until dye exhaustion, and then the 
dyeing process is finished, Perkins (1997). The flow direction can be inside to outside (I-O) or outside to inside (O-I). 
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Figure (1). Equipment for thread bobbin dyeing. 
  
3. Matematical Modeling  
 

The Method of Volume Averaging, presented by Whitaker (1985), was utilized to develop the mathematical model 
in this work. This method allows modeling the problem in different scales, as presented by Revello (2002). In this paper 
only the mathematical modeling in the microscale will be shown, where the textile fibers are in contact with the dyeing 
bath contained into the porous of the thread, but in future works the modeling of the intermediary scale will be 
presented, which is the area where are the bobbins thread along with the dyeing bath, and the macroscale, formed by the 
thread bobbins immersed in the dyeing bath inside the equipment. 

Figure (2) shows the problem scales of this study. The k-phase represents the textile fibers in contact with a dyeing 
bath, which is identified as the γ-phase. The k-phase is assumed to be a rigid and impermeable solid in this modeling.  

The dye is the chemical species of interest in this work. It is transferred from the dyeing bath to the γ-k interface 
during the dyeing process. 
 
 

 
 

Figure 2. Thread bobbin in different scales. 
 
3.1. Mathematical Modeling in the Microscale 
 

The mathematical modeling presented in this section includes the k and γ phases, which represent the microscale. 
The microscale is formed by the textile fibers (solid phase) denominated of k-phase and by the dyeing bath (fluid phase 
or γ-phase), as shown in Fig. (2). 

The microscale can be interpreted as an enlarged image of the thread in the microscope. The γ-k interface is a fiber 
surface where chemical reactions can take place, so the hypothesis that dyeing occurs just in the fiber surface will be 
assumed. 



 

The textile fibers can be natural or synthetic. The most utilized fiber among the natural ones is cotton. Polyester and 
acrylic are increasingly becoming more important in the textile industry, among the synthetic ones. 

The chemical reaction in the fiber surface results in the textile dyeing, so a good reaction will result in a better 
quality of the product. Some factors have interference in this reaction, but the most important is the interaction among 
dyes and fibers, due to that, some types of dyes can be just used with some specific fibers. For example, cotton fibers 
are dyed with reactive dyes on the other hand acrylic fibers can not, so it is used a basic dye instead. 

Aiming to develop a general mathematical model, where different dye classes and textile fibers could be utilized, 
the equations and their boundary conditions in the microscale will be written with two reactions terms, the first one in 
Eq. (2) is the reactive and the second one is the adsorptive. The mechanism of the alkaline hydrolysis competes with the 
formation of covalent bonds between dye and fiber. Therefore, the hydrolysis rate of reactive dyes is also an indirect 
measurement of the reactivity of the dye to cellulose at a given temperature and pH value, as discussed by Klancnik and 
Gorensek (1997).  

The reactive term will be utilized when reactive dyes are applied, so in this situation the coefficient Ψ is 1 and Ω is 
0. When another dye is utilized the adsorptive term is necessary, so Ψ is 0 and Ω is 1. 
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The variable AC  is the molar concentration, AsC is the surface molar concentration, t  is the time, γD  is the 

molecular diffusivity in the γ - phase, '''
Ar  is the molar rate of the hydrolysis chemical reaction, knγ  represents the unit 

normal vector pointing from the γ - phase toward the k - phase, k  is the reaction rate constant, kγA  represents the 
interfacial area γ - k and eγA  represents the entrances and exits of the γ - phase at the boundary of the intermediary 
scale region, as shown in Fig. (4). 

The chemical species conservation equation is written according to Eq. (1), where the convective term is neglected 
in this scale because the velocity is zero into the thread. Equation (2) is the first boundary condition, and represents that 
every molar flux arriving in the γ - k interface is reacted or adsorbed in the same interface, following a given kinetic. 
When the problem has homogeneous and heterogeneous reaction, the constant Ψ will be 1 and Ω will be 0. When just 
adsorption occurs, Ψ will be 0 and Ω will be 1. 

The functions in the second condition and initial condition represented by Eq. (3) and (4), respectively, are not 
known, so it is impossible to solve Eq. (1) to (4). To solve this problem the Method of Volume Averaging will be 
applied in these equations. It will allow determining the average concentration, which is sufficient because there is no 
need to have the point concentration. 

In the Method of Volume Averaging the superficial average concentration is given by Eq. (5). 
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The intrinsic average concentration, defined by Eq. (6), is a preferred form to represent the average concentration 

for the development of the mathematical modeling. Because of this, the final equation will be written with intrinsic 
average concentration. 
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These two concentrations are related by Eq. (7), where the γε  is the porosity in the γ - phase given by Eq. (8). 
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Equation (1) is integrated over the domain γV  and divided by σV  to obtain Eq. (9). Since γV  is not a function of 

time, the left hand side of Eq. (9) becomes Eq. (10). 
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Application of the spatial averaging theorem, presented by Howes and Whitaker (1985), in the diffusive term give 

us 
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and application of the boundary condition given by Eq. (2) leads to a new equation with heterogeneous reaction terms in 
the principal equation. 

The hydrolysis reaction of reactive dyes in an aqueous alkaline solution can be represented by Eq. (12), as 
presented by Ruiz and Hoechst (1987). 

 

AhA Ckr −='''  (12) 
 
In which hk  is the pseudo-first-order rate constant of hydrolysis. This constant changes with the variation of 

temperature, pH and dyes. 
The process of spatially smoothing Eq. (12) is given by Eq. (13). 
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Substituting Eq. (13) in Eq. (11) and neglecting variations of the molecular diffusivity within the averaging volume, 

it is possible to use the spatial averaging theorem a second time to obtain 
 

γ
γ

γκ
σ

γκ

γκ
σ

γ

γ

γ εε Ah
A

As
A

A
AA

A CkdA
t

C
CkdACC

t
C

Ψ−







∂

∂
Ω+Ψ−+
































+∇⋅∇=

∂
∂

∫∫ V
1

V
1D n  (14) 

 
The reaction constant k  is considered constant in the γ-k interface, and we are using a rigid porous medium, which 

allows us writing that γ-k interface does not change with time. 
The Nernst linear isotherm, given by Eq. (15), can represent the equilibrium between surface molar concentration 

and bulk molar concentration. 
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Equations (16) and (17) represent the surface area per unit volume γκva  and area average concentration kAC γ , 

respectively. 
 

σ

γκ
γκ V

A
av =  (16) 

 

∫=
γκ

γκ
γκ

A
AA dAC

A
C 1   (17) 



 

Applying the definitions above and substituting  Eq. (7) into Eq. (14), it is possible to obtain  
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Our goal is to obtain the governing equation for intrinsic average concentration, so it is necessary to eliminate the 

point concentration from Eq. (18). We decompose the point concentration, according to Gray (1975), which is 
analogous to the temporal decomposition used in turbulent transport study. 
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where AC
~

 is the spatial derivation concentration. 
Substitution of decomposition into Eq. (18) allows us writing Eq. (20), as Brandão (2002). 
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For all the practical problems of fluid diffusion in porous we can affirm that intrinsic average concentration is equal 

to the area average concentration kAC γ , as presented by Whitaker (1999).  If the constraint given in Eq. (21) is 

satisfied, this affirmation can be proved. 
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in which or  is the radius of the average volume in the microscale, cL  represents a characteristic length associated with 

the averaging concentration and 1cL  is a characteristic length associated with the first derivative of γ
AC . 
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To obtain the governing equation for intrinsic averaging concentration it is necessary to develop the closure 

problem for AC
~

 and this is done in the next section. 
 
3.2. Closure problem in the microscale 
 

In this section our problem has been reduced to the determination of spatial deviations, AC
~

. To obtain a governing 

differential equation for AC
~

 we can subtract Eq. (1) from Eq. (22) using the decomposition given by Eq. (19). 
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The boundary condition can be obtained in the same form with the substitution of Eq. (19) by Eq. (2), which we 

express as 
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Equation (23) is much complex with non-homogeneous terms, so it is necessary to simplify terms by estimating of 

magnitude order. 
It is obvious that the textile dyeing process is transient. Although, we must retain the transient term in the intrinsic 

average concentration equation given by Eq. (22), in the closure problem we can eliminate the transient term if the 
constraint in Eq. (25) is satisfied.  
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where *t  is the characteristic time.   

The second term to be analyzed is the non-local term written below 
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The magnitude order of diffusive term into Eq. (23) is estimated in Eq. (27). 
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The length scale γl is so small compared to L , and γε  is in the order of 1. Due to this, it is possibly to write Eq. 

(28). 
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We can neglect the second term of the right hand side of Eq. (23) using the method of Quintard and Whitaker 

(1994) to obtain the following closure problem: 
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Equation (31) is the periodicity condition. This condition can be written if the geometry of the representative region 

is spatially periodic. The problem in study is the packed thread in bobbins, these threads are packed in a region spatially 
periodic. 

To solve the closure problem equations the method of superposition will be applied. The solution proposed is 
expressed as 
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In which b  is a vector and s , p  e ψ  are scalar closure variables. When Eq. (32) is substituted into Eqs. (29) to 

(31), we obtain four new problems given as 
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Periodicity: ( ) ( )rr ss i =+ l , i = 1, 2, 3 (38) 
 

Problem III 
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Periodicity: ( ) ( )rr pp i =+ l , i = 1, 2, 3 (41) 
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The problems I, II and III have to be solved by computational methods, Ochoa (1993). The problem IV has 

analytical solution and certainly Ψ is constant, but it is not necessary to solve this problem because Ψ will not pass 
through the filter in Eq. (22). 

Substituting Eq. (32) into the intrinsic average concentration equation, Eq. (22), we obtain the closed differential 
equation to γ

AC . 
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The effective diffusivity term is defined by 
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and the vectors u  e v , represented by Eqs. (47) and (48) are associated with heterogeneous chemical reaction and 
adsorption, respectively. 
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The vectors u  e v  are the convective transport terms generated by a heterogeneous reaction and adsorption in the 

fibers surface. The contribution of this convective term can be negligible in the microscale, because it has not velocity 
and the diffusion is much more important than the convective term. Therefore, the vectors u  e v can be zero, as 
Quintard e Whitaker (1993).  

From this analysis we can write the closed dye transport equation in the fluid phase microscale, given by Eq. (49). 
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4. Conclusion  
 

The present study contains the modeling of the packed thread dyeing process in the microscale region, where this 
region is formed by textile fibers in contact with the dyeing bath contained into the thread. 

A theory of diffusion in two-phase systems has been presented based on the method of volume averaging. This 
method allows developing the mathematical modeling from the microscale to the macroscale problem. Due to that, in 
general, the model becomes more accurate than classical ones. The developed model in this work allows  simulating the 
dyeing process with any type of dyes. 

The method of closure has been developed for spatially periodic porous media. The solution of closure problem 
allows calculating the theoretical effective diffusivity tensor, without empirical correlations. 

The analysis of the closure problem makes possible to affirm that the dye hydrolysis reaction affects the effective 
diffusivity tensor. In the next work, the solution of the closure problem is presented as well as the effect of hydrolysis 
reaction in the effective diffusivity tensor. 
 
5. Acknowledgement 
 

The authors would like to thank Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq for the 
financial support. 
 
6. References 
 
Brandão, H.L., 2002, “Transferência de Massa no Processo de Biodegradação de Efluentes Líquidos em Reatores com 

Biofilme”, Tese de Doutorado, Curso de Pós-Graduação em Engenharia Química – CPGENQ, Universidade 
Federal de Santa Catarina. 

Cegarra, J., Puente, P., and Valldeperas, J., 1992, “The Dyeing of Textile Materials”, Ed. G. B. Paravia & C, Torino, 
Italy. 

Gray, W.G., 1975, “A Derivation of the Equations for Multiphase Transport”, Chemical Engineering Science, Vol. 30, 
229 – 233. 

Howes, F.A., and Whitaker, S., 1985, “The Spatial Averaging Theorem Revisited”, Chemical Engineering Science, Vol. 
40, pp. 1387-1392. 

Hyde, R.F., Thompson, G and Stanley, K.A., 1996, “Commercial and Environmental Challenges in Continuous Dyeing 
with Fiber Reactive Dyes”, Textile Chemist Colorist, Vol. 28, n. 8, pp. 76 – 79. 

Klancnik, M. and Gorensek, M., 1997. “Kinetics of Hydrolysis of Monofunctional and Bifunctional Monochloro-s-
triazine Reactive Dyes”, Dyes and Pigments, Vol. 33, n. 4, pp. 337 – 350. 

Ochoa-Tapia, J.A, Del Rio, P.J.A., and Whitaker, s., 1993, “Bulk and surface Diffusion in Porous Media: An 
Application of the Surface-Averaging Theorem”, Chemical Engineering Science, Vol. 48, 2061 – 2082. 



 

Perkins, W.S., 1997, “Principios Básicos para el Teñido del Acrílico en la Actualidad”, Textiles Panamericanas, 
Atlanta, Vol. 57, n. 2, pp. 82 – 85. 

Quintard, M. and Whitaker, S., 1993, “Transport in Ordered and Disordered Porous Media: Volume Averaged 
Equations, Closure Problems, and Comparison with Experiment”, Chemical Engineering Science, Vol. 48, 2537 – 
2564. 

Quintard, M. and Whitaker, S., 1994, “Convective, Dispersion, and Interfacial Transport of Contaminants: 
Homogeneous Porous Media”, Advances in Water Resources, Vol. 17, 221 – 239. 

Revello, J.H.P., 2002, “Tingimento de Fios Têxteis em Bobinas – Uma Abordagem Numérica e Experimental”, Tese de 
Doutorado, Curso de Pós-Graduação em Engenharia Química – CPGENQ, Universidade Federal de Santa Catarina. 

Ruiz, I.N.E., Hoechst Remedia, S.A., 1987, “Prevencion de Tailing Causado por Hidrolisis Mediante el Uso de una 
Técnica de Tintura en Estado Estacionario”, Colombia Textil, Caracas, Venezuela, pp. 29 – 39. 

Whitaker, S., 1985, “A Simple Geometrical Derivation of the Spatial Averaging Theorem”, Chem. Engr. Ed., Vol. 19, 
pp. 18-21, 50-52. 

Whitaker, S., 1999, “Theory and Applications of Transport in Porous Media – The Method of Volume Averaging”, 
Ed.Kluwer Academic Publishers, London. 

 




