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ABSTRACT. In this paper we analyze the frequency response function of structures including random parameters. The 
Frequency Response Function (FRF) is an usual representation of the dynamic behaviour of systems, it is also a current form to 
identify them. Thus, in the study of stochastic structures it is interest to have the stochastic expression of the frequency response 
function.  The mean value and the standard deviation of the FRF of the structure are obtained from the inputs expectations and 
cross-covariance.  The stochastic finite element method base on perturbation technique, will be used to do so.  The Stochastic 
Finite Element Method attempt to combine the finite element analysis and the stochastic analysis to study structures with random 
variation in geometry or material properties.  The stochastic finite element method based on perturbation uses the development 
of Taylor about the mean values of random variable to represent the uncertainty of structural engineering problems. This 
technique will be used to compute the frequency response function of a simple stochastic structure. Limits of perturbation 
approach are studied in terms of sensitivity of the solution versus the random parameters values. The convergence of the method 
is analysed. A Monte Carlo Simulation is used to validate our results.  
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1-Introduction                   
 

The extension of the finite element method to take in account the uncertainties in the geometry or material 
properties of a structure, as well as the applied loads, is spelled Stochastic Finite Element Method. This field has 
recently become an active area of research because of perception that in some structures the response is strongly 
sensitive to the small random variation in material properties or geometry of the structure. Eccentricity in cross-section, 
differences of mass density and/or Young's modulus are examples of randomness of structural engineering problems. 
Such uncertainties are usually spatially distributed over the region of the structure and should be modeled as random 
fields. The stochastic analysis refers to the explicit treatment of uncertainty in any quantity entering the corresponding 
deterministic analysis. The Stochastic Finite Element Method attempt to combine the finite element analysis and the 
stochastic analysis. 

Several methodologies can be adopted to evaluate structural response uncertainties. Early applications used the 
Monte Carlo simulation (Astill et al., 1972), which computes the responses for a (large) set of random numbers 
representing the uncertainties. Such a method is time consuming and needs a lot of CPU. Later, the Taylor series 
expansions, sensitivity vectors methods and perturbation methods were used to compute the second-moment statistics of 
response quantities in structural applications.  These methods are mathematically identical to the second order of 
perturbation method (Benaroya & Rehak, 1988). Spectral methods, based in polynomial expansion, coupled with 
Galerkin projection are used as well (Ghanem & Spanos, 1991). 

The basic idea of the second-moment analysis of stochastic systems by perturbation method, is to expand, via 
Taylor series, all the stochastic field variables about the mean values of random variables, to retain only up to second-
order terms (Kleiber & Hien, 1992). The output expectations and cross-covariances are obtained from the input 
expectations and cross-covariances. This method is much faster than the Monte Carlo one, but it increases the number 
of equations to be solved. However, the perturbation method has a simple formulation of the spectral methods (which 
require integral solutions), presenting the same result quality low values of dispersion of the random parameters (Diniz 
et all, 1999). The increase of the number of problem equations in the perturbation method can be minimized by 
employing a Component Mode Synthesis method (Diniz & Thouverez, 1999) 

 In this paper, the stochastic finite element method, based on perturbation technique, will be used to compute the 
frequency response function of stochastic structures. A general formulation is presented and a simple structural example 
is studied to illustrate the method. Limits of perturbation approach are studied in terms of sensitivity of the solution 
versus the random parameters values. A  Monte Carlo simulation is used to validate our results. 

 Regarding that the achieved results present instability in the stochastic FRF behavior near resonance a convergence 
analysis of the Taylor series expansion using higher orders is performed. 
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2– Frequency response function expression for the stochastic case 
 

The FRF is a well-adapted representation of the dynamic behavior of systems for experimental comparison, it is 
also a current form to identify them. In the study of stochastic systems, it is interesting to use the stochastic form of the 
Frequency Response Function. Using a perturbation approximation for the study of the stochastic FRF, the Taylor 
expansion o f the FRF will be performed as a function of the random variables.    

 A bar with only one random variable will be studied and, to simplify, with only one degree of freedom. The 
Frequency Response Function with respect to the mass and stiffness will be applied making the higher order Taylor 
development simpler. The Taylor development convergence of the FRF in this case will be studied. 
 The equilibrium equation of a “N” degree of freedom discrete system with hysteretic damping is:  
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 In the particular case of one degree of freedom, the Frequency Response Function “H” can be written as:   
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 Assuming “K” is a direct function of the random parameters “b”(in this particular case: Young’s modulus), the FRF 
will be an indirect function of this parameter only. It is desired, then, to attain the FRF mean and standard deviation 
values from the “K(b)” mean and standard deviation.    
 The Taylor development of stiffness “K” and of FRF “H” over the mean and standard deviation values of the 
random variable “b” are given by: 
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and, with only one random variable:    
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Thus, the random system equation developed with the Taylor series is attained:   
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 Defining: ( ) MKiK 20* 1 ωη −+=  and ( ) )1(** 1 KiK η+= , if the same order terms are grouped, the 
following expressions are achieved:  
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 In general, the “n-th” derivative of “H(b)” will be given by: 
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 Hence, the Taylor developed FRF can be written as:   
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3 – Taylor Development of the FRF’s mean.  
 
 The mean value of the FRF is given by the expected value de “H(b)” in equation 12: 
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 The expected value [ ] ( )[ ]0bbEbE −=∆  depends on the kind of probability distribution adopted for random 
variable “b”.  
  

If a gaussian probability distribution is adopted for the random variable “b”, the characteristic law, responsible 
for generating the statistic moments, will give by: 
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with: ( )[ ] =−= 202 bbEσ Var(b) 
  
 The odd expected value exponents are then zero and the even exponents are a function of the random variable 
variance.   

The Taylor development of the mean value of the FRF for a gaussian distribution of the random variable is given 
by: 
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or, in a recursive manner and considering only the even terms:  
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 The order two development (n=1) provides: 
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 For a uniform probability distribution, the characteristic law generating the statistic moments gives:    
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The Taylor development of the mean value of the FRF for the random variable uniform distribution is given by: 
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where the index “u” is used to distinguish the mean value of the FRF in the uniform case from the mean value in the 
gaussian case.  
 The order two development of the FRF for the random variable uniform distribution gives then:  
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Applying the perturbation method to calculate the to a clamped-clamped bar of length 2 [m], diameter 0,02 [m] and 

density 7800 [kg/m3]  with random  Young’s modulus with mean value  E = 21*1010 [N/m2]  and  standard deviation  
σσσσ% = 5% we was obtained the results shows in figure 1. A 100 elements discretization is used. This figure presents the 
comparison between the FRF, calculated by using a Taylor expansion of order two, and the Monte Carlo simulation 
(30.000 iterations) to a gaussian probability distribution of the random Young modulus.  

 
 

 
 
Figure 1. Mean FRF (magnitude and phase) - Monte Carlo simulation (           ) and Perturbation method (           ). 
 
 
 



 4. – Convergence Analysis of the Mean Value  
 
 The comparison between the FRF evaluated for both methods shows in figure 1, for frequencies close to the natural 
frequencies of the bar, a large difference between the results of Taylor expansion and Monte Carlo simulation. 
 In order to evaluate if the approximation of the stochastic FRF near resonance frequencies by higher order Taylor 
expansion series is effective, a convergence analysis of the Taylor series expansion was done. To determine the 
permissible values  for the random variable variance, which would result in a converging Taylor development of the 
mean of the FRF magnitude, the following expressions are shown.     
 
Gaussian Distribution 
 

From equation (16), one can write: 
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With the definitions of “K**” and “H0” in resonance, it can be obtained for the bar with a random Young’s 

modulus: 
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Thus, to guarantee the convergence of the FRF’s mean value Taylor development, the non-dimensional standard 
deviation  “σσσσ%(E)”is constrained by: 
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This expression show that the order increase in the Taylor development decreases the array of standard deviation 
values to which the FRF mean development converges. 

The Young’s modulus admissible standard deviation to different orders of Taylor expansion are show in table 1, for 
the gaussian distribution case. 

 
Table 1 - Young’s modulus admissible standard deviation to gaussian distribution. 

 
Gaussian distribution 

Order of expansion 2 4 6 8 10 
σσσσ%(E) maximum 0.0080 0.0044 0.0031 0.0024 0.0019 

 
 
Even though, if a comparison is made with the Monte Carlo’s simulation, regarding an allowable error margin, it 

can be defined an array of standard deviation values where the Taylor series solution gives satisfactory results. That is 
shown in Figure 2, where the results attained with Monte Carlo’s simulation with 30.000 iterations and with Taylor 
series development are compared. The curves were plotted for a 0.2% dumping for the different order terms in the 
Taylor development. 



 
Figure 2: comparison of the mean value evolution in the case of a Young’s modulus gaussian distribution. 
 

Figure 2 shows that an order two Taylor development is already sufficient to represent the Frequency Response 
Function mean. The higher order developments get farther from the Monte Carlo’s simulation for smaller Young’s 
modulus standard deviation values. This trend is confirmed through figure 3. 

 
 Figure 3: comparison of the mean value evolution in the interval [0; 2.5] – Young’s modulus gaussian distribution case. 
   

Using different values for the dumping coefficient, one can determine for each order in the Taylor development, the 
maximum standard deviation that ensures the series convergence. These values are shown in figure 4. 

 
 



Figure 4: maximum standard deviation for a gaussian distribution 
  

The admissible standart deviations to Young’s modulus  obtained in Tab. 1 and show in Fig. 4 are extremely small 
for pratical application of a bar with a gaussian distribution Young’s modulus.  
 
Uniform Distribution 
 
 From equation (21), it can be written:  
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 With the definitions of “K**” and “ 0H ” in resonance, one can obtains for a random Young’s modulus rod: 
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Thus to ensure the FRF mean value Taylor development convergence, the standard deviation non-dimensional 

value “σσσσ%(E)” is constrained by: 
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The Young’s modulus admissible standard deviation to different orders of Taylor expansion are show in table 2, for 

the uniform distribution case. 
 

Table 2 - Young’s modulus admissible standard deviation to uniform distribution 
 

Uniform distribution 
Order of expansion 2 4 6 8 10 
σσσσ%(E) maximum 0.1540 0.1386 0.1320 0.1260 0.1283 

 
 As for the gaussian distribution, the order increase of the Taylor development to the uniform distribution does not 



increase the series convergence. The order two development is then sufficient to represent the random FRF.  
 The Taylor series intervals of convergence are bigger in the Young’s modulus uniform distribution than the 
gaussian distribution intervals. For example, in an order two development with uniform distribution the Taylor series is 
convergent until a 1.54% standard deviation value against a 0.01% in the gaussian case.  
 The FRF magnitude variation as function of the Young’s modulus standard deviation in the uniform distribution 
case is shown in figure 5.    The curves were plotted for a 0.2% dumping for different orders in the Taylor development. 
As in the gaussian case, comparison with Monte Carlo’s simulation allows to increase the validation limits for the 
Taylor development (figure 5). 

Figure 5: mean value evolution comparison in the case of a Young’s modulus uniform distribution 
 
 Figure 5 also shows that the order two development of the Frequency Response Function’s mean is closer to the 
Monte Carlo’s simulation. Figure 6 confirms this observation for standard deviation lower than 2.5%.  

Figure 6: comparison of the mean value evolution in the interval [0; 2.5] – Young’s modulus uniform distribution case. 



 
 To different values of the dumping coefficient figure 7 shows the maximum standard deviation for different orders 
of Taylor expansion in the uniform distribution case. 

Figure 7: maximum standard deviation for the uniform distribution 
 
5. Conclusion 
 

The stochastic finite element method based on perturbation technique is used to compute the frequency response 
function of stochastic structures. A general formulation is presented and a simple structural example is studied to 
illustrate the method. 

The ontained results shows that the use of a Taylor development in the study of the mean of the Frequency 
Response Function is constrained through the extremely poor convergence of the Taylor series near resonance. This 
convergence interval decreases when the development order is increased. It is also observed that for a development of 
the same order the intervals of convergence are larger for the uniform distribution.   

It can also be observed that an order two development compared to the Monte Carlo gives a good representation of 
the FRF behavior even for standard deviations higher than the convergence limit if small error values are assumed. This 
behavior observed in both cases studied is more significant in the case of a uniform distribution.  

One can conclude that the order two development is a better approximation for the FRF statistic behavior. Though, 
due to the limited Taylor series convergence to represent the FRF mean, this approximation is limited to the extremely 
small values of the Young’s modulus standard deviation.  
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