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Abstract. The proposal of this work is to model the dynamics and to estimate the parameters of a XY table applied in conventional
machine-tool to allow its control by using adaptive techniques. The proposed dynamic model will be simulated through Newmark
method. The estimation of the parameters, modal parameters and excitation signal of the model will be established by using two
methods - least-squares (LS) and recursive least-squares (RLS). The excitation signal will be Schroeder due its excellent
characteristics of persistent excitation. The validation of the model will be observed through the curves and tables of the estimated
parameters. 
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. Introduction  

Recent paradigms of the industrialized world, such as quality, productivity and competitiveness, require flexible, 
ast and accurate process production. This fact demands high accuracy machine tools. XY tables, which are present in 
ost machine-tools, are used to locate the workpiece during the machining process. Several works have been published 

oncerning design and XY tables control of machine-tools objectifying to reach better requirements of accuracy, speed 
nd reliability (Younkin, 1991; Tomizuka et all, 1992; Larsen et all, 1995; Smith et all, 1995; Tung et all, 1996; Chang 
t all, 1997; Jesus, 1999; Mei et all, 2001). In order to guarantee high accuracy positioning of this type of table, it is 
ecessary to know its dynamics and main error source very well. Thus, it is possible to establish an appropriated control 
ystem. XY tables consist of several mechanical components as spindle, nut, bearing, and guides. In many cases, the 
ynamics characteristics these components are neither know nor supplied by machine-tool makers. It is possible to 
escribe the dynamic behavior of a XY table through a differential equation and by means of numeric integration 
ethods to obtain the solution of the system for an excitation signal and initial conditions. Once input and output 

ignals, obtained from simulation process, are known it is possible to estimate unknown parameters of the model as well 
s the source of excitation action (Mariano, 1997) by using conventional and recursive estimation methods. In this 
ork, dynamic modelling through differential equation and the Newmark method (Bathe, 1976) is used in the 

imulation process. The excitation signal is the Schroeder (Schroeder, 1970), due to its excellent characteristics of 
ersistent excitation. Estimation techniques such as least square (LS) and recursive least square (RLS) are applied. 
imulation techniques are fundamental during the design and advanced diagnosis process of structural behavior of a 
achine-tool when submitting to different operation conditions. In adaptive controllers the observations are obtained 

equentially in real time. It is desirable to make computations recursively in order to save computation time. Recursive 
stimators techniques are quite applied in models of adaptive control due their capacity of estimating parameters in real 
ime. Finally, dynamics, modal parameters and excitation signal of the model are identified.     
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2. XY table prototype 
 

Most types of machine-tools use positioning systems of one (X), two (XY), or three (XYZ) axes, traveling from a 
few millimeters to several meters and requiring accuracy and repeatability as small as a nanometer. Examples of 
mechanical systems with positioners include lathes, milling machines, machining centers and coordinate measuring 
machines (CMM). The positioning table in study presents two spindles and it was part integrant of a conventional 
milling machine. Its structure shown in Fig. (1) is composed of sliding guides, mobile bases, sliding spindles, nuts and 
bearings. 

 
Figure 1. XY table 
 
3. Modelling 
 

A science fundamental problem is to explain physical observations starting from mathematical equations. 
Therefore, the process of obtaining a mathematical model that represents a physical phenomenon, whose behavior is the 
most reliable possible to a behavior of the real process, it is not a simple task. A mathematical model is a representation 
of the essential aspects of a system, that presents knowledge of that system in a usable form (Eykhoff, 1974). 
Effectively, the equation or equations group that compose the model are an approach of the real process. It means that 
the model cannot incorporate all macroscopic and microscopic characteristics of the real process. The relationship 
between input and output of a dynamic system can be expressed mathematically by transfer functions, differential 
equations, state space equations, among others.     

The main components of the XY table used in this work can be seen in Fig. (2), including the DC motor and 
coupling that are part of driving system. Each one of spindles that composed the table contains several elements, which 
possess mechanical characteristics such as axial elasticity, torsional elasticity, inertia, and friction. In additional, the 
table spindles are influenced by nonlinearities such as thermal deformation, stick-slip and backlash. 
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Figure 2. Principal components of the axis 
 

For dynamics analysis of the spindle of Fig. (2), a mass-spring-damper model of the type shown in Fig (3) is 
proposed, where, 
 

B   overall damping in the set   
K   equivalent stiffness coefficient of the system   
M1   sum of the inertia of the motor and of the spindle   

 



 

M2   equivalent inertia of the table   
F   difference between the torque of the motor and the load torque   
x1, x2  angular displacements of the motor and of the spindle respectively  
 

 
Figure 3. Mass-spring-damper model of the spindle 
 
Applying the Newton's second law of motion in the system of Fig. (3), the following equations are originated, 
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In matrix form, these equations can be introduced in the following way, 
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Making the due analogy with the rotary system, the Eq. (1) stay as follows, 
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The Eq. (3) is similar to that developed for (Lacerda, 1998). It can be attributed T T  for simplification effect. 

The relationship between the linear displacement and the angular displacement of the system is given for , where 
 = 7,96x10

m T= −
x lθ=

l -4 (m/rad) is the angular lead of the spindle. 
 
4. System simulation  
 

In order to obtain the temporal response of the dependent variables of a model by simulation, it is necessary that the 
input variables to be excited with adequate signals. In addition, the initial condition values of the dependent variables 
should be specified. Project of equipment, processes and plants and their respective control systems; control systems of 
processes and optimizing of the operational conditions of plants, are possible applications of the dynamics simulation 
(Garcia, 1997). For the execution of the simulation process with base in real values, it was used the data showed in Tab. 
(1). These data, which are related to a XY table, are provided by the table manufacturer, THOMSON Ind., according to 
(Lacerda, 1998). 

 
Table 1. Parameter values 
 
Parameter Value Units Description 

1I  2,7e-05 kg.m2 Sum inertial: motor and spindle   

2I  8,3e-06 kg.m2 Equivalent inertia of the table – X axis 

B  2,1e-03 N.m.s/rad Damping of the system   
K  1,1e+02 N.m/rad Stiffness of the system   

 
Important topics should be stood out in the simulation process; it can be mentioned the choice of the type of 

excitation signal, as well as, the selection of the numeric method to be used. Amongst the excitation signals that are 
used usually, it can be mentioned: harmonic excitation, impulse excitation and aleatory excitation that were discussed 
and used for (Treiguer, 1993). An indispensable characteristic in an excitation signal, in the process of systems 
identification, is the maintenance of the persistent excitation conditions. This, amongst other advantages, can be 

 



 

obtained by the application of the synthesized signal of the periodic type with the same statistical properties of a white 
noise (Schroeder, 1970). This signal was used in several works (Silva, 1999; Mariano, 1998) and it demonstrated 
enough efficiency in the identification process of the systems. 

 
 

Figure 4.  Schroeder excitation signal 
 

 Concerning the numeric integration method, the Newmark method, although being an unconditionally stable 
integrator and to present agreement among the maximum and minimum values of amplitudes corresponding of the 
numeric solution in relation to exact solution, it can be proven that an error exists in the vibration period, and that is a 
function of the integration time-step used. This and other topics referring to precision and stability of the direct 
integration methods, were analyzed thoroughly for (Nickell, 1973). These errors can constitute crucial problems in the 
process of the identification systems, however, a factor too much important that should be evaluated is the application 
of an appropriate integration time-step that can be reached by an efficient approach that contemplates the relevance of 
the dynamics of the system, allowing to obtain a great integration time-step. The more efficient the approach, the more 
exact it will be the dynamics response coming from the numeric integrator and consequentially more consistent it will 
be the identification results, as it is evidenced by the approach developed for (Oliveira, 1997).    

The choice of the great numeric integration time-step is a primordial factor for a good performance of the numeric 
method and consequent consistency of the values of parameter identification and of forces in dynamic systems. This 
step is related to the dynamics of the system and it cannot be taken as an aleatory value.   

In the direct integration algorithms, using a step-by-step numeric procedure solves Eq. (2) and (3); the direct term 
means that, to make the numeric integration, any transformation of the equations in another form is necessary. The 
Newmark integration method was applied by (Mariano, 1998) in the process of parameters identification and external 
disturbances in mechanical systems, having presented excellent results when compared to others numeric integration 
methods. The following equations are used, 

 
{ } { } ( ){ } { }1t t t t t tX X X Xδ δ+∆ +∆ = + − +  t∆                                            (4) 
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                                           (5) 

Where  and  are parameters that can determine precision and stability in the numeric integration process. The 
Newmark method originally proposed is an unconditionally stable algorithm in which case  = 1/4  and = 1/2. In 
addition to Eqs. (4) and (5), for solution of the displacements, velocities, and accelerations at time , the 
equilibrium equations (3) at time t are also considered, 

α δ
α δ
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+∆

 

[ ]{ } [ ]{ } [ ]{ } {t t t t t t t tI X B X K X T+∆ +∆ +∆ +∆+ + = }                                          (6)  

Solving from Eq. (5) for {  in terms of { , and then substituting for { into Eq. (4), we obtain 

equations for { } and , each in terms of the unknown displacements {  only. These two relations for 

and  are substituded  into Eq. (6) to solve for { , after which, using Eqs. (4) and (5), { and 

can also be calculated. 
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5. System identification  
 

It can be obtained a state-space model for the equation system (3) in the form . Choosing the states as  A CTθ θ= +
being the angular displacements  and the angular speeds as being , then,  1  e θ θ2 21  e ω ω
 

1 1 1 1

2 2 2 2

ω θ ω θ

ω θ ω θ

= ⇒ =

= ⇒ =
                                                              (7) 

 
Substituting the Eq. (7) in the equation system (3) is obtained the following model, 
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Eq. (8) represented in the compact discrete form using  can be given for, 1 ( . ) . .k kI A Dt Dt C Tθ θ+ = + +
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In its compact matrix form, it can be expressed as [ ] , where,  [ ][ ]b A φ=
 

[ ]b :  rectangular matrix of Nx4 order that contains the displacement and speed vectors in the instant ; 1t k= +

[ ]A : rectangular matrix of Nx5 order that contains the excitation and response vectors in the instant t k ; =

[ ]φ :  rectangular matrix of 5x4 order that contains the parameters that will be estimates. 

 
The least-squares solution of  is given for, [ ][ ] [ ]A φ =
 

1ˆ T TA A A bφ
−

 =                                                                        (10) 

 

So that   constitutes the least-squares estimator of the unknown parameters of . φ̂ φ
 

5.1 Recursive least-squares estimation (RLS) 
 

The Equation (10) presupposes that all input and output data for the system are known so that the estimation is done 
all at once (Aguirre, 2000). On the other hand, the state vectors of the system can be update sequentially in a discrete 
form allowing the recursive estimation of the parameters. The major advantages of the recursive techniques are the 
possibility to know and to monitor the parameters of the system at the time in that the process data are available. Also, 
they are less susceptible to problems of numeric order, such as the problem of the matrix inversion singularity present at 
the least-squares formulation, according to Eq. (10).  

Computation of the least-squares estimation can be arranged in such a way that the results obtained at time t  can 
be used to get the estimation at time t . The solution in Eq. (10) to the least-squares problem will be rewritten in a 

recursive form (Aström, 1995). Let  denote the least-squares estimation based on t  measurements. Admitting 

that the matrix  is nonsingular for all t . Defining as being, 

1−
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It follows that, 
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 The Equation (10) can be rewritten as, 
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 The least-square estimation is given for, 
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 It follows from Eqs. (12) and  (13) that, 
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 The estimation at time t  can now be written as, 
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 The residual  can be interpreted as the error in predicting the signal one step ahead based on the 

estimation . To proceed, it is necessary to derive a recursive equation for , the following lemma is useful, 
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 This implies that, 
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Theorem 1.  Admitting that the matrix has full rank, that is,  is  nonsingular, for all  t . Given  

and , the least-squares estimate , then, satisfies  the recursive equations, 
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 The Equations (14), (15) and (16) define, therefore, the recursive least-squares estimator (RLS), appropriate to be 
used, for example, in the parameters estimation in real time at some models of  adaptive controllers. 
 The Equation (9) can be represented in a recursive form as follows, 
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line; :  residue vector;  u t . 
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 Considering the inertia , damping  and stiffness  estimated matrices, after to the parameters 

identification process of the system, it is developed the excitation signal identification process which is given by the 
following equation, 
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Figure 5. Block diagram for the estimation process 
 
6. Simulation results 
 

The Table (2) presents the data for the calculation of the integration time-step using the criterion ( )2 nDt N kπ ω= , 

where  is the number of discretization points, is the natural frequency of the system. The excitation frequency is  N nω

( ) (0 2k Nπ= =

Dt

)Dtnω ω . This criterion, as can be seen, considers the dynamics of the system in the calculation of 

, what makes possible the selection of a great value. 
 
Table 2. Data for the calculation of  Dt
 

N  k  nω (rad/s) 0ω  (rad/s) Dt (s) 

512 10 4,1626e+03 416,2582 2,9481e-05 
2048 146 4,1626e+03 28,5108 1,0761e-04 

  
The  values  of   were selected after a search process that consisted  in  the keep fixed  the value of  varying    k N k

to determine the best value for  that favored the smallest estimation error. This can be checked through Tab. (2).  Dt
For the data of the Tab. (2) was obtained the response as function of displacement, speed and acceleration from  

Eqs. (4), (5) and (6) that constitute the Newmark integrator. 
With  the  data of  the system  response  and  of  the excitation  signal it was possible to determine from Eq. (10) the  

 



 

parameters of the system and compare them to the exact values, which are presented in Tab. (3). It should be note that 
the real values in Tab. (3) are those showed in Tab. (1). Substituting the real parameters and the estimated parameters 

values in the states matrix of Eq. (8) and solving the determinant A Iλ−  and ˆ ˆA Iλ−

dω

, where  e  are the real 

states matrix and estimate states matrix, respectively, then the real eigenvalues and estimate eigenvalues are determined. 
Substituting the eigenvalues in the equation , the eigenvectors can be determined easily (Lalanne, 1984). 

The calculation of the eigenvalues allows through the formulations  and 

A

j

Â

( ) 0A I xλ− =

n jζω− ± ˆ ˆ ˆn dζω ω− ±  the obtaining of 

and d, , nζ ω ω d
ˆ ˆ ˆ, , nζ ω ω , which are damping factor, natural frequency and damped natural frequency, real and 

estimated, respectively, of the system. In this case, 21 ζ−  d nω ω= and 2ζ̂−ˆ ˆ 1d nω ω= .  Table (4) presents the results 

of the real and estimated parameters, which were obtained by using these formulations. 
 

Table 3. Estimated parameters values – LS Estimator 
 

512   10N k= =  2048 146N k= =    Parameters 
Real Estimated Error (%) Real Estimated Error (%) 

2,7e-5 2,7133e-5 4,9e-1 2,7e-5 2,702e-5 7,6e-2 

8,3e-6 8,2999e-6 7,05e-6 8,3e-6 8,29999e-6 1,06e-7 

2,1e-3 1,4e-03 3,509e+1 2,1e-3 7,4e-3 2,52e+2 

1I  (kgm2) 

2I (kgm2) 

B (Nms/rad) 
K (Nm/rad) 1,1e+2 1,0905e+2 8,5e-1 1,1e+2 1,03e+2 6,36e0 

 
 

Table 4.  Modal parameters estimated values – LS Estimator 
 
 
 
 

512   10N k= =  2048 146N k= =    Modal 
parameters Real Estimated Error (%) Real Estimated Error (%) 

4,1626e+3 4,1423e+3 4,8e-1 4,1626e+3 4,0276e+3 3,24e0 

4,1626e+3 4,1423e+3 4,8e-1 4,1626e+3 4,0276e+3 3,24e0 

4,1593e+3 4,1410e+3 4,4e-1 4,1593e+3 3,9852e+3 4,18e0 

1nω  (rad/s) 

2nω  (rad/s) 

1dω (rad/s) 

2dω (rad/s) 
 

4,1593e+3 
 

4,1410e+3 
 

4,4e-1 
 

4,1593e+3 
 

3,9852e+3 
e 

4,18e0 

1ζ  3,97e-2 2,59e-2 3,48e+1 3,97e-2 1,447e-1 2,64e+2 

2ζ  3,97e-2 2,59e-2 3,48e+1 3,97e-2 1,447e-1 2,64e+2 

 
 The estimated parameters of Tab. (3) were applied in Eq. (18) for estimation of the excitation signal and 
comparison with the real signal, what can be seen in Figs. (7) and (8). For the case of the recursive least-squares 
estimator the procedure was similar to above accomplished. Thus, with the response data of the system and of the 
excitation signal was possible to determine through Eq. (14) the parameters of the system and compare them to the 

exact values; this is presented in Tab. (5). The determination of the eigenvalues, eigenvectors,  and  d, ,nζ ω ω d
ˆ ˆ ˆ, , nζ ω ω  

follows the same previous procedure. The Table (6) presents the results of estimation of these parameters. It is 
opportune to visualize the behavior of the estimated parameters along the recursive process graphically, what is 
presented in Figs. (9), (10), (11) and (12) respectively. The estimated parameters of Tab. (5) were also applied in Eq. 
(18) for the estimation of the excitation signal and comparison to the real signal. 
 
 
Figure (7). Identified excitation -                           Figure (8). Identified excitation -  512   10N k= = 2048   146N k= =
 

 



 

Table 5. Estimated parameters values – RLS Estimator 
 

512   10N k= =  2048 146N k= =    Parameters 
Real Estimated Error (%) Real Estimated Error (%) 

2,7e-5 2,699e-5 3,67e-2 2,7e-5 2,69998e-5 6,81e-4 

8,3e-6 8,299e-6 2.75e-4 8,3e-6 8,29999e-6 3,6e-7 

2,1e-3 2,08e-3 6,64e-1 2,1e-3 2,0998e-3 5,0e-3 

1I  (kgm2) 

2I (kgm2) 

B (Nms/rad) 
K (Nm/rad) 1,1e+2 1,0994e+2 4,89e-2 1,1e+2 1,0999e+2 5,8e-4 

 
Table 6. Modal parameters estimated values - RLS Estimator 
 
 
 
 

512   10N k= =  2048 146N k= =    Modal 
parameters Real Estimated Error (%) Real Estimated Error (%) 

4,1626e+3 4,1617e+3 2e-2 4,1626e+3 4,16257e+3 2,11e-4 

4,1626e+3 4,1617e+3 2e-2 4,1626e+3 4,16257e+3 2,11e-4 

4,1593e+3 4,1585e+3 1,9e-2 4,1593e+3 4,15928e+3 2,04e-4 

1nω  (rad/s) 

2nω  (rad/s) 

1dω (rad/s) 

2dω (rad/s) 
 

4,1593e+3 
 

4,1585e+3 
 

1,9e-2 
 

4,1593e+3 
 

4,15928e+3 
 

2,04e-4 

1ζ  3,97e-2 3,95e-2 6,36e-1 3,97e-2 3,973e-2 4,6e-3 

2ζ  3,97e-2 3,95e-2 6,36e-1 3,97e-2 3,973e-2 4,6e-3 

 
 

 It is observed with base in the results of the Tabs. (3), (4) and of the Figs. (7) and (8) that a number smaller of 
discretization points  associated with a value smaller for  presented better estimation results for the method LS, 
although the damping estimation error having been reduced, still continue high. However, it is necessary to point out 
that different values are being used for . For the RLS method, analyzed the results of the Tabs. (5) and (6) and of  the 
Figs. (9), (10), (11) and (12), can be concluded by the superiority of the estimation results, when compared to the 
estimation results by the LS method. It should be pointed out that in this latter case a larger value of  had an 
influence more positive in the reduction of the estimation errors. 

N Dt
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gure (9) – Recursive estimation of stiffness                                Figure (10) – Recursive estimation of damping 
gure (11) – Recursive estimation of inertia                                Figure (12) – Recursive estimation of motor inertia  



 

7. Conclusions 
 

In this work, a dynamic model for a machine-tool spindle was developed and the response to a signal with 
appropriate characteristic of persistent excitation was obtained. Simulation results in terms of state vectors 
(displacement and speed) along with the input vector were applied for the identification process of the system and input 
signal by using two techniques of parameters estimation, which were RLS and LS techniques. The dynamic modelling 
of the table spindle and the proposed identification method demonstrated to be effective. 

In this study, several situations were simulated and the obtained results showed the superiority of the RLS 
technique compared to of the LS technique.  

The influence of the selection of an appropriate time-step of  discretization  was observed  in the performance of the 
numeric integration method in the solution of the differential equation that governs the dynamic behavior of the system.    

This study showed  that  Newmark method  was adequate for systems that present this type of dynamic behavior. 
Although, the values of the parameters applied in the simulation process were relate to a high precision table the 

dynamic model and identification method which were proposed in this study can be applied to others models of table. 
Since that the dynamics characteristics of the table, in other words, the plant, are identified, it is possible to project 

the controller to meet the requirements of performance of the system with respect to positioning accuracy and response 
speed. As the dynamics of the table is variable with the time due to influence of several factors as friction, for instance, 
the adaptive controllers are a quite attractive option in these applications. Techniques of adaptive control are already 
been studied with this objective, also, the dynamic model of the spindle will contemplate important effects of 
nonlinearities of the process that has not be considered in this work, yet. 

This study could be extended through the evaluation of other estimators, for instance, extended least squares (ELS) 
and recursive least squares with exponential forgetting. Besides, others numeric integration methods, for instance, 
Houbolt, Wilson θ and  Runge-Kutta could be appraised as well as others excitation signals. 

Further work is been carried out in order to observe the influence of the white noise in the results of recursive 
estimate. In additional, the RLS estimation technique will be investigated together with other recursive techniques in the 
experimental identification of the table in study objectifying the application of adaptive techniques in the control of 
position of the system.  
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