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Abstract. The cascade control strategy is used in thermal and chemical processes to avoid the propagation of intermediate 
disturbances in the control loop. This technique measures an intermediate variable whose response to process disturbances can be 
observed earlier than in the controlled variable response. An internal or slave controller is implemented to establish an internal 
control loop in the intermediate variable. There are different methods to tune the internal PID controller, such as: quarter decay 
ratio, Dahlin tuning method and Lambda tuning, all of them based on off-line process identification as a FOPDT (First Order Plus 
Dead Time) model. To tune the Master or external controllera few tuning equations have been developed. The main sets of tuning 
equations were developed  by V. Austin (1986) and Lee and Park (1998), but they operate in a narrow range of  dynamic process 
parameters. M. Sanjuán (1999) found a set of equations to tune the master controller in PI – P and PID – P configurations. In this 
paper, we present a set of equations to tune the master controller as a  Proportional Integral (PI) controller when the slave 
controller is either a PI controller or a P controller, based on FOPDT identification for the internal and external processes. These 
equations were obtained by running computer simulations of FOPDT processes in Matlab and Simulink and designing a  three level 
factorial experiment. Performance evaluation is also carried out, comparing with Austin, Lee and Sanjuán tuning equations.These 
equations are valid for a wider range of process identified FOPDT parameters.   
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1. Introduction 

 
Automatic Process Control is an important engineering field in order to obtain better products and services to 

satisfy human necessities. In a lot of industrial processes, automatic process control variables is a technique used to 
maintain them in safe dynamic operation ranges. However, many variables are not handled by the control systems. 
These kind of inputs are called disturbances, and an efficient way to prevent the propagation of their effects through the 
process is by implementing a control strategy which compensates generating an stable response in process variables. 

Feedback control is the most simple, inexpensive, and easy way to implement an automatic control strategy. The 
disadvantage of feedback control is, however, that disturbances must propagate through the process before the 
controller identifies the effect and starts to compensate for them. Hence, in order to reduce this effect, it can be 
implemented a cascade control loop, also called cascaded control strategy. It is very used in thermal and chemical 
processes to compensate the propagation effect of intermediate disturbances.  But the main disadvantage of cascaded 
control strategy is the lack of equations to tune the parameters in the master controller. The process identification as a 
first order plus dead time (FOPDT) allows the implementation of a model which represents the process behavior in an 
efficient way. Using the FOPDT approach some tuning sets have been developed for master controllers in cascaded 
control architectures, however the dynamic ratios associated with process parameters have limited ranges, therefore the 
tuning methods do not work well in some cases. In this paper a newer developed set of tuning equations for cascaded 
control systems is presented. It was developed based on the FOPDT approach and it works in a wider range of process 
dynamics than current sets of tuning equations. The parameters defined to tune the master controller are: proportional 
gain, integral time and derivative time, based on a PID (proportional – integral – derivative) controller model. The main 
goal of this research is to  establish a set of tuning equations for other controller architectures: PI in master controller 
and P in slave controller (PI-P), PI in master controller an PI in slave controller (PI-PI) and PID in master controller an 
P in slave controller (PID-P). 
 
2. FOPDT Approach 

 
A first order plus dead time dynamic model is identified by Fit 3 method for industrial processes. This method is 

based on the identification of three main process parameters: open loop gain, time constant and dead time. The open 
loop gain takes a measure of how input variables changes have effect in output variables. The following equation is a 
mathematical expression for an open loop gain: 
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The time constant shows the stability in the response for an step input in the set point. This method defines the time 

constant as the time to reach 63.2% of the total change in the system response. This process parameter has a direct 
relation with the stability and the speed of the process variable response. The slower the process response in open loop, 
the larger the time constant. The dead time is an indication of the transport delay of the output variable. It is produced 
by a delay time in the variable measurement generated by sensors and transducers. 
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where: 
 
τ: Time constant 
t0: Dead time 
t1: Time at which 28.3% of total variable change occurs 
t2: Time at which 63.2% of total variable change occurs 
 
In order to describe the dynamic behavior of the process, we can define the system transfer function which models 

mathematically how changes the output variable for change in input variables. Also, transfer functions can be defined as 
the ratio of the Laplace transformed output variable to the Laplace transformed input variable. The transfer function 
completely defines the steady state and dynamic characteristics, or the total response, of a system described by a linear 
differential equation. Equation (3) describes the transfer function according to the first order plus dead time model used 
to identify industrial processes: 
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3. Review of Tuning Equations 

 
The first set of tuning equation for master cascaded controllers based on a single test was developed by Vanessa 

Austin (1986). These equations determine values of proportional gain, integral time and derivative time for master 
controllers in cascaded architectures for PID configurations. On Tab.(1) and Tab.(2) we can find the set of tuning 
equations for optimum tuning for disturbance changes and set point changes. Each one has specific ranges for dynamic 
ratios based on process parameters. The performance parameter used to develop this set of equations is the integral of 
the absolute value of the error (IAE). 
 
Table 1. Tuning equations – Two level cascade system – for disturbance changes. 
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Use this table if τ2/τ1>0.38. Otherwise, use table 2.  
 
Table 2. Tuning equations – Two level cascade system – for set point changes. 
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Where: 
 
ΚCM: Master controller proportional gain 
Κp1: Outer loop process gain 
Κp2: Inner loop process gain 



 
τΙ1: Master controller integral time 
τ1: Time constant of outer loop 
τ2: Time constant of inner loop 
t01: Dead time of outer loop 
t02: Dead time of inner loop 
 
Other set of tuning equations was developed by Sanjuán (1999). These equations determine the values of 

proportional gain and reset time for master controller in cascade architectures with proportional controller in the inner 
loop and proportional – integral controller in outer loop. The expression to compute the value of the proportional gain 
follows: 
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The value of the integral time is equal to the time constant in outer loop. λ, in equation 4, must be computed 

according to the following expression: 
 









+−−= 0,303.9127.8332.2836.3

1

2
21 τ

τττλ Max         (5) 

 
 
Another set of tuning equations available in the literature is the one developed by Lee and Park (1998). They 

developed a tuning set for master and slave controllers in control loops identified with the FOPDT model. This set of 
tuning equations is shown on Tab. (3). 

 
Table 3. Lee and Park’s tuning equations set. 
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The terms λ1 and λ2 on Tab. (3) represent two constants which are used as parameters for adjusting the speeds for 

loop closed response. These parameters are given by: 
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To tune the slave controller in cases where the cascade tuning method does not specify an equation, Dahlin’s 

Synthesis method is used. This method is characterized by a non aggressive closed loop response, according to the 5% 
overshoot criteria, a desirable behavior for self-regulated industrial processes . The tuning equation for a PI controller 
based on Dahlin´s synthesis is: 
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Where: 
 
ΚCE: Slave controller proportional gain 
 

4. Methodology to Generate the Tuning Equations Set 
 
The methodology which was used to find this new equation set has the following steps: 
 



  

• Development of a Simulink dynamic model based on the FOPDT approach in order to simulate the control 
system. 

• Design and execution of an experiment in order to find the optimum values for each process parameters 
combination (unreplicated).   

• Analysis of variance for collected data. From the data trend, the next step was to establish different equation 
models for controller tuning parameters. 

• Fit through a non linear regression analysis the data with each model, and then, find the values for the 
constant parameters in each model. 

• Choose the best models depending of how good the data fitted each one. 
• Evaluation of the tuning equations set using computational examples of typical process models. 

 
5. Simulink Dynamic Model 

 
Computational models with externally adjusted process parameters were developed in order to carry out every 

experimental condition. The internal and overall loops were modeled using a FOPDT model. The following expression 
show the transfer function for internal and overall loop: 
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The disturbance was represented as a first order model, without dead time, in order to obtain quick propagation of it 

effect in the control loops. The disturbance transfer function is the follows: 
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Where: 
 
Kd: Disturbance gain 
τd: Time constant of disturbance 
 
In Fig.(1), we can observe the cascade control architecture scheme. Based on that scheme the Simulink model was 

built up. 
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Figure 1. Cascade control architecture scheme. 
 

6. Experimental Design 
 
In order to establish the tuning equations for each cascade architecture (i.e. PI-P), an full factorial experiment was 

designed and implemented.  A constrained function minimization was incorporated to each experimental condition, to 
obtain the optimal tuning parameters for each process parameters combination. A performance parameter (OP) was 
defined based on the Integral of the Absolute value of the Error (IAE) and the Integral of the Manipulated Valve signal 
(IMV).  The expression for this term is: 
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Γ  in Eq. (10) represents the suppression factor, which measures the impact of IMV in the tuning performance. 

Optimal tuning at each experimental condition is defined as the set of tuning parameters with minimum IMV.   
 
A three-level factorial experiment was chosen in order to observe linear and nonlinear correlation between process 

parameters and optimal tuning.  Such experiment involves seven factors to produce 2187 runs for each controller 
architecture. No replicates were necessary, because this experiment is a deterministic computational test where 
repetition of factor levels will provide the same results. We did not use a fractional design to preserve the number of 
degree of freedoms and, therefore, the robustness of the experiment and the reliability of the equations obtained.  In 
Tab.(4), we can observe the levels selected for each experimental factor.  The response variable for the experiment were 
the optimal tuning parameters. The levels of each experimental factor were selected taking a wider range of dynamic 
process parameters than the other set of tuning equations. 

 
Table 4. Dynamic process ratios used for the near-optimum value experiment. 
 

Levels Kp1 τ1 101 /τt Kp2 12 /ττ 0102 / tt Γ 
Low 0.5 1 0.2 0.5 0.1 0.1 2 

Medium 1.5 3 0.6 1.5 0.4 0.4 5 
High 2.5 5 1.0 2.5 0.7 0.7 8 

 
7. Experimental results 

 
A Matlab subroutine was developed to run the experiment, using the Optimization and Statistic toolboxes available 

in release Matlab 6.1.  To identify the most significant factors for the optimal tuning parameters, an ANOVA (Analysis 
of Variance) table was built for each tuning parameter (i.e. Kc, Ti) as response variable.  .  For the analysis, only main 
effects and second-order interactions were taken into account.  . In Tab. (5) and Tab. (6) the ANOVA for master 
controller proportional gain and integral time, in PI-P controller architecture, are shown. In Tab. (7) and Tab. (8) the 
ANOVA for master controller proportional gain and integral time, in PI-PI controller architecture, are also shown. 

 
Table 5. Summary of ANOVA table that includes the most significant factors in the master controller proportional gain 

response for the experiment in controller architecture PI-P. 
 

Source Sum. Sq DOF Mean Sq Fo P value 
kp1 4750.76 2 2375.38 87.40 0 

t01/τ1 36066.48 2 18033.24 663.51 0 
τ2/τ1 329138.26 2 164569.13 6055.07 0 
t02/t01 64817.05 2 32408.52 1192.42 0 

 
Where: 
 
DOF: Degree of Freedom 
Fo: Test Statistic F 
 

Table 6. Summary of ANOVA table that includes the most significant factors in the master controller integral time 
response for the experiment in controller architecture PI-P. 

 
Source Sum. Sq DOF Mean Sq Fo P value 

τ1 1279.312 2 639.656 73.8626 0 
τ2/τ1 260.5512 2 130.2756 15.0432 3.2616e-007 
t02/t01 752.1878 2 376.0939 43.4285 0 

 
Table 7. Summary of ANOVA table that includes the most significant factors in the master controller proportional gain 

response for the experiment in controller architecture PI-PI. 
 

Source Sum. Sq DOF Mean Sq Fo P value 
Kp1 1548.9389 2 774.4694 11.5996 9.7759e-006 
τ1 6669.4966 2 3334.7483 49.9459 0 

t01/τ1 5621.2146 2 2810.6073 42.0956 0 
τ2/τ1 2710.0596 2 1355.0298 20.2948 1.8648e-009 
t02/t01 3573.5995 2 1786.7998 26.7616 3.3422e-012 



  

 
Table 8. Summary of ANOVA table that includes the most relevant factors in the master controller integral time 

response for the optimization experiment in controller architecture PI-PI. 
 

Source Sum. Sq DOF Mean Sq Fo P value 
τ1 9817.9372 2 4908.9686 46.1565 0 

t01/τ1 8644.7692 2 4322.3846 40.6412 0 
τ2/τ1 2710.0596 2 1355.0298 20.2948 1.8648e-009 
t02/t01 3573.5995 2 1786.7998 26.7616 3.3422e-012 

 
In the ANOVA table, the F value is used to distinguish the significant factors. F0 is the test statistic for the 

hypothesis of no differences in process parameters variances. The P value is an approach for decision making. This is 
related to the interval of confidence. 

 
From  Tab. (5) a tuning equation containing significant factor is proposed.  The tuning equation in Eq. (11) is 

adjusted using non linear regression methods obtaining R2=0.6966.  
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From the Tab. (6) The same analysis was developed to find a model for integral time expression gives the next 

results. The model of Eq. (12) adjusts with a non linear regression 94% (R2=0.9362) the variability to predict new 
observations. Therefore, the master controller integral time, in PI-P controller architecture, is the follows: 
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From the Tab. (7) the model of Eq. (13) was found. It adjusts with a non linear regression 70% (R2=0.7041) the 

variability to predict new observations. Then the master controller proportional gain, in PI-PI controller architecture, is 
given by the next expression: 
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From the Tab. (8) the model of Eq. (14) was found. It adjusts with a non linear regression 73% (R2=0.7250) the 

variability to predict new observations. Then the master controller integral time, in PI-PI controller architecture, is given 
by the following expression: 
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The equations (11) to (14) composed the proposed Lopez and Sanjuan’s set of tuning equations for PI-P and PI-PI 

cascade architectures for industrial self regulated processes. In Fig. (2) and (3) we can observe response surfaces  of 
master controller proportional gain and master controller integral time for each architecture considered.  

 



 

 

Figure 2. Response surfaces for master controller proportional gain and master controller integral time based on the 
tuning equations set found to PI-P cascade architecture. 
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Figure 3. Response surfaces for master controller proportional gain and master controller integral time based on the 

tuning equations set found to PI-PI cascade architecture. 
 

8. Performance evaluation 
 
Two examples are given in this section to illustrate the performance of the proposed tuning method. The Lopez-

Sanjuan set of tuning equations is compared with the tuning methods available in section 3 (Austin, Sanjuan, Lee and 
Park). Two performance criteria are going to be used : IAE and OP, defined by the authors in Eq. (11), using a 
suppression factor equal to 1 to give the same weigh to IAE and IMV. 
 
8.1. Chemical Process 

 
Since many chemical processes can be identified as FOPDT models, this example presents a process used by Lee 

and Park (1998) to evaluate the robustness of their tuning method. This example is going to be used to evaluate the 
proposed PI-P cascaded controller architecture tuning equation. The following transfer functions represents the inner 
and outer loops and the disturbance model: 
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Based on the transfer functions, the ranges of dynamic process parameter are the following: 
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A step input of 5 units was implemented in the disturbance to analyze the performance when there is a disturbance. 
For set point changes, a 10% change of the steady-state value was made. In Fig. (4) and Fig. (5), respectively, the closed 
loop response for disturbance change and set point change of each controllers tuned with every equation considered is 
presented. In Tab. (9) the performance comparison of different tuning methods. 
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Figure 4. Process response for example 1, measured in transmitter output for a disturbance step change using a PI-P 
cascade control architecture.  
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Figure 5. Process response for example 1, measured in transmitter output for a set point step change using a PI-P 
cascade control architecture. 

 
Table 9. Performance comparison of different tuning methods. 
 

Tuning Method IAE disturbance OP (Γ=1) disturbance IAE set point OP (Γ=1) set point 
Austin 621.27 664.31 256.21 562.71 

Sanjuán 454.69 516.08 308.53 609.89 
Lee&Park 2715.37 2982.57 1538.77 1710 

Lopez&Sanjuan 416.31 384.03 154.87 476.22 
 
In Fig. (4) and Fig. (5) the process response for each tuning method is shown. It can be observed that the controller 

tuned with the proposed equation reaches steady-state faster. In addition, this behavior is accomplished with a good 
quantitative performance according with the criteria shown on Tab. (9). Considering only the minimum IAE criteria, the 
best performance is obtained by the proposed set of equations. If the OP parameter is used to compare, the best behavior 
is also obtained.   

 
 
 
 



 
8.2. Thermal Process 

 
This example was proposed by Semino and Bambrilla (1996), in order to test different parallel cascaded control 

schemes. We used this example to evaluate and to compare the performance of the proposed PI-PI cascade controller 
tuning method. The transfer functions are as follows: 
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Based on the transfer functions, the ranges of dynamic process parameter are the following: 
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A step input of 4 units was made in the disturbance to analyze the performance to disturbances changes. For set 

point variations, a change of 10% stationary state signal value in positive direction was realized. In Fig. (6) and Fig. (7), 
respectively, the closed loop responses for disturbance change and set point change of each tuning set are presented. In 
Tab. (10) the results of the evaluation for IAE and OP are shown. 
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Figure 6. Process response for example 2, measured in transmitter output for a disturbance step change using a PI-PI 
cascade control architecture. 
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Figure 7. Process response for example 2, measured in transmitter output for a set point step change using a PI-PI 
cascade control architecture. 



  

Table 10.Performance comparison of different tuning methods. 
 

Tuning Method IAE disturbance OP (Γ=1) disturbance IAE set point OP (Γ=1) set point 
Austin 206.95 586.59 229.65 456.20 

Lee&Park 136.14 375.25 594.94 899.11 
Lopez&Sanjuan 138.89 268.54 402.96 533.49 

 
Fig. (6) and Fig. (7) show the process response using different tuning methods. It can be observed that the controller 

tuned with the proposed equation provides a non oscillatory response and reaches steady-state faster. Considering the 
minimum IAE criteria, for disturbance step change, the best performance is obtained by the proposed set of equations. If 
the OP parameter is used to compare, the best behavior is also obtained. Considering the minimum IAE criteria, for Set 
Point step change, Austin’s response has the best quantitative performance, according to Tab.(10). Using the OP 
parameter, Austin obtain the best performance but with an small difference comparing with the proposed set of 
equations.  

 
9. Conclusions 

 
A new set of tuning equations for master controllers in PI-P and PI-PI cascaded architectures is presented in this 

paper. The tuning equations models are based on first order plus dead time identification of self-regulated processes. 
The main advantage of these equations is that they work in wider ranges of dynamics process FOPDT parameters than 
other tuning methods. Future research shall address the development of new sets of tuning equations for cascade 
architectures such as: PID-P, PID-PI and PID-PID. A deeper look to the effect of dynamic relations among inner and 
overall loop process parameters in cascade architecture performance should also be considered.   
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