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 Abstract: The aim of this work is to study transverse vibration of rotating shafts, with an approach that makes 
possible, during design, to prevent unstable vibration at working speed. The Finite Element Method is used and 
the motion equations are obtained from Lagrange equations which describe the motion in two transverse 
planes. A local rotating coordinate system is used and for the shaft's motion matrix equation a gyroscopic 
matrix has to be taken in account. The beam elements have two nodes and six degrees of freedom in each node, 
three displacements and three rotations. As a result, each element produces twelve differential equations. The 
Mathematica® software was used to obtain the mass, the gyroscopic, and the stiffness matrices, by integration 
of the kinetic and the potential energies, and by differentiation of  the energies according to Lagrange 
equations. With the matrices obtained, a computer software written in Fortran accomplishes the assembly of the 
global matrices of the shaft, and simulates the shaft’s response, according to established dimensions, material, 
angular velocity. This software has been successfully tested taking a classical case as a reference. Comparison 
of the results obtained with the analytical model, that doesn’t include unbalancing effects,  reveasl a very good 
agreement. These results are presented in this work.  
Keywords.  Mechanical Vibrations, Rotating Shafts, Gyroscopic effect 

 
1. INTRODUCTION 
 

Design of rotating equipment operating smoothly under various conditions of speed, has been a 
challenge to designers, due to the fact that operating speeds are increasing every day and equipments have to 
work satisfactorily in low and high speeds. 

Designers have to obtain the critical speed of  a  system, and  compare with the operating range, to 
make sure that the motion will be stable and low-level amplitude of vibration prevails. 

Under certain conditions, a rotating shaft can perform a motion with very high amplitude of vibration. 
This motion, can lead to the destruction of the system. The aim of this work is to study transverse vibration of 
rotating shafts, with an approach that makes possible, during design, to preview unstable vibration at working 
speed. The subject is most interesting in the design of aeronautic turbines shafts. 

The Finite Element Method is used, adopting beam elements with two nodal points and six degree of 
freedom for each node. The motion equations are obtained from Lagrange’s equations, and describe the motion 
in two transverse planes. A local rotating coordinate system is used and shaft's matrix equation of motion 
presents a characteristic gyroscopic matrix.  

Each node of the finite element has six degrees of freedom, three displacements and three rotations. As 
a result, for each element, twelve differential equations have to be accounted for. To obtain the mass, gyroscopic 
and stiffness matrix, the software Mathematica® was used for the integrations of the kinetic and potential 
energy, and for the differentiation required by Lagrange’s equations. A Fortran computer software was written, 
to assembly the shaft element matrices into global matrices, and to simulate the shaft response, for several 
dimensions, materials, angular velocities and unbalanced loads. 

 To obtain the time domain response, the integration procedure of Newmark was adopted. This software 
was tested, and numerical results were compared to a classical case reported by the literature. Results reveal a 
good agreement with the analytical solution of the problem. 
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2. MATHEMATICAL DEVELOPMENT 
 

 
Consider a vibrating shaft rotating about axis X with constant angular velocity Ω  relative to the inertial 

axes XYZ. A set of axes xyz rotating with the shaft is adopted according to Figure (1). The displacement vector 
can be written in the vector form as 

zeuzyeuyu rrr
⋅+⋅=                                                                                                                                    (1) 

where ye
r

 and ze
r

 are unit vectors according to the rotating  xyz axes and uy  and uz are the corresponding 
displacement, according to Figure 2. 
 

 
 

Figure 1 – Rotating elastic shaft in bending simply supported at both ends 
 

 
 

                                           
Figure 2 – Displacements and unit vectors for the rotating coordinate system 

 
Differentiating the preceding equation with respect to time, one may obtain the velocity vector of a 

typical point on the shaft as 
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 The kinetic energy T of the shaft can be stated as (Meirovitch, 1986 and 1997) 
 
T = T transversal + T longitudinal + T rotational                                                                                     (3) 
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where m= mass per unit length of the shaft and  
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where y and z are geometric center coordinates of the cross sectional area of the shaft, e is the distance from 
geometric center to gravity center, an α is the initial angular position of the gravity center 
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where ux=longitudinal displacement 
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where Ip = mass polar moment of inertia of the cross-sectional área of the shaft. 
The potential energy V is considered as 

 
V = V transversal + V longitudinal + V rotational                                                                                   (9) 
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where shaft  theof area sectional-cross  theof inertia momentof area Ia and modulus elasticity  E ==  

dx
x
uxAE

2
1nalVlongitudi

2l

0
∫ 







∂
∂

⋅⋅⋅=                                                                                                    (11) 

where area sectional-Cross A =  
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where modulusshear  G = and p J = shaft  theareaof  sectional-cross  theof inertia ofmoment polar   
 



 
 Figure 3 – Nodal displacements for a two noded beam finite element 
 
 A two noded beam element, with six degrees of freedom for each node, was adopted for the finite 
element model, as seen in Figure 3. 
 To obtain the displacemets along the element, the following shape funtions should be used (Meirovitch, 
1986): 
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Replacing Eqs. (13), (14), (15) and (16) into Eqs. (4), (7), (8), (10), (11) and (12), one may obtain the 

total kinetic and  potencial energies for the element, according to Eqs. (3) and (9). Equations (3) and (9) can, 
finally, be expressed as a function of the nodal displacements 2uz,2,2uy,2,2ux,1,1uz,1,1uy,1,1ux γθβγθ  and 

2β . To accomplish the integrations involved in the equations of kinetic and potential energies dependent on the 
variable x, software Mathematica® was used.  In order to obtain the equations of motion for the finite element, 
Lagrange’s equations were adopted (Meirovitch, 1986 and 1997): 
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Where 

  
T = element's kinetic energy 
V = element's potential energy 
qi = generalized coordinates 
Qi = generalized forces 

 
To accomplish the differentiations involved in Lagrange’s equations, the software Mathematica® was 

utilized. Taking the nodal displacements 2uz,2,2uy,2,2ux,1,1uz,1,1uy,1,1ux γθβγθ  and 2β  as generalized 
coordinates in Lagrange’s equations, the equation of motion can be derived and expressed in the matrix form: 
 

[ ] { } [ ] { } [ ] { } { }Qqkqcqm =⋅+⋅+⋅ &&&                                                                                                                (18) 
 



Where 
 

 [m] = mass matrix 

{ }q&& = acceleration vector 
[ ] c = gyroscopic matrix 
{ } q& = velocity vector  
[ ] k = stiffness matrix  
{ }q  = displacement vector  

 {Q} = unbalancing forces vector 
  
    For the matrix equation of motion, the following matrices were obtained:  
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[ ] [ ] [ ]21 kkk +=                                                                                                                                        (21) 
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The displacement vector in the matrix equation is 
 

{ } [ ]T22uz22uy22ux11uz11uy11uxq γβθγβθ=                                       (23)   
 
Then unbalancing force vector is 
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Where, considering the eccentricity e constant along the shaft 
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A Fortran computer software was written, to assembly the shaft element matrices into global matrices, 

and simulates the shaft response, for several dimensions, materials, angular velocities and loads.  To obtain the 
time domain response, the integration procedure of Newmark was adopted.  

This software has been successfully tested taking a classical case as a reference. Comparison of the 
results obtained with the analytical model and the numerical results reveal a very good agreement.     

 
 
                              
 

3. RESULTS 
 

 
An analytical solution of a rotating elastic shaft symply supported at both ends has been presented by 

Meirovitch, 1997. The free vibration solution was obtained in the time domain for the local rotating set of axes. 
In this work, Meirovitch’s solution is used as a reference for the finite element model test. Therefore, some 



conditions were estabilished for comparison. Since Meirovitch didn´t included unbalancing efects, the present 
results are for free vibration. 

A constant cross-section steel shaft  400mm long and 25mm diameter has been analysed. For the shaft 
simply supported at both ends and the finite element model having 20 elements, it has been found that the first 
natural lateral frequency  of the non-rotating shaft is 1986.1 rad/s. For both models, results were obtained for the 
rotating speed at 50%, 100%, 200%, and 400% of the first natural frequency. These results are presented in local 
coordinates for the central node of the shaft, acording to Figures (4), (5), (6) and (7). 
                                            
 
 

 
      Analytical Result                                          Numerical Result 

 

 
Figure 4 – Local  trajectory of the shaft  for the rotating speed equal to 50% of the first frequency 

 
 
 

 
Analytical Result     Numerical Result 

 
Figure 5 – Local  trajectory of the shaft  for the rotating speed equal to 100% of the first frequency 
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Analytical Result    Numerical Result 
 

 
 

Figure 6 – Local  trajectory of the shaft  for the rotating speed equal to 200% of the first frequency 
 
 

 
 
                              Analytical Result    Numerical Result 

 
 
 

Figure 7 – Local  trajectory of the shaft  for the rotating speed equal to 400% of the first frequency 
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4. CONCLUSION  
 
 
 The present work presents a finite element model which allows a vibration analysis of a rotating shaft. 
One can notice that the mass, stiffness and gyroscopic matrices for the rotating velocity iqual to zero, are those 
classical matrices for the nonrotating case. The present results show additional matrix elements in the stiffness 
matrix and the occurance of the gyroscopic matrix when rotation is considered. It also can be observed that the 
angular velocity Ω  does not affect the mass matrix. One particular aspect of the matrix equation of motion is the 
anti-symmetric characteristic of the giroscopic matrix, which has to be taken into account for the correct solution 
of the matrix equation. 
 For the purpose of corroborating the model, numerical results for some cases were compared to results 
obtained from a analytical solution proposed by Meirovitch, 1997, which predicts the response of a constant 
cross section of  a rotating shaft symply supported at both ends. For comparision, four cases were devised. For 
the same shaft, results were obtained for angular velocities Ω  iqual to 50%, 100%, 200% and 400% of the first 
natural frequency of the same nonrotating shaft.  Local  trajectory of the shaft  for the four rotating speeds are 
presented by Figures (4), (5), (6) and (7), considering both models. These results show a very good agreement 
for the first three cases and a poorer match for the 400 % case. 
 One has to consider also the qualitative aspects of the results, which does not show any tendency of 
resonance, as it should be, taking into account that the free motion of the shaft has been analysed. 
 A more general model for the rotating shaft coud also be considered, which is not the purpose of this 
work. One can also considerer the shaft suporting discs of considerable inertia and the effect of a umbalancing 
forces produced by these parts. At present, the model allows the consideration of a concentrated and 
considerable mass in any point of the shaft, neglecting the rotating inertia. It can be done by simply altering the 
geometrical parameters of the finite element at the point where the concentrated mass is to be considered. 
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