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Abstract. The performance of squeeze-film damper bearings as a flexible support of a bearing-rotor system is analyzed. The use of 
squeeze films as support in the system rotor-bearing, has been studied since the early 1960s and applications in turbines by the 
producers of gas-turbine. If appropriately designed, turbines using squeeze film bearings can go quickly by the critical speed of the 
axis rotor with substantial reduction of the vibrations of the axis, which could damage the equipment. The forces produced by 
dynamic pressure of the lubricant are obtained by the solution of the Reynolds equation for the fluid-film. The dynamical equations 
that govern the motion of the rotor supported by squeeze films are solved by Newmark method. An iterative procedure in the time 
domain is applied in order to have a solution of the nonlinear-coupled equations of motion. Parameters associated to the mass and 
rotational speed of the axis, physical and geometric characteristics of the bearing, such as viscosity of the fluid, radial clearance, 
length and diameter of the bearing, were varied to allow evaluations of the orbital behavior of the rotor. For chosen groups of 
parameters, the influence of the unbalanced force of the rotor was studied. Results reveal a sensitivity of motion stability and orbital 
size to all parameters values. 
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1. Introduction 
 

The use of squeeze films as support in rotor-bearing systems, has been studied since the early 1960s and has found 
applications in turbines by the producers of gas-turbine (Cookson and Kossa, 1979). Basically, the squeeze film consists 
of a fluid confined between an axis-rotor (in this case, the axis of a turbine) and the outer race of a rolling contact 
bearing. That element type can, in much appraised conditions, attenuate the vibrations of the system rotor-bearings and 
promote the stability of the axis. If designed appropriately, turbines that use the squeeze film system can go quickly by 
the critical speed of the axis rotor with sensitive reduction of the vibrations of the axis, which could damage the 
equipment (Holmes, 1972). 

Unlike the classic behavior in the hydrodynamic bearings analysis, where in the steady-state condition the axis 
assumes an eccentric constant position relative to the bearing, in the analysis of the squeeze film, the position of the axis 
varies with the time (Zhang, Litang and Li, 1992 and Nataraj and Ashrafioun, 1979). That characteristic is due to the 
presence of a centrifuge harmonic force caused by an unbalance of the rotor. Characteristically the position of the axis 
goes by a transient phase and progresses to a steady state orbit. The position and format of that orbit depends on the 
characteristics of the bearing, the lubricant oil, the weight and angular speed of the axis and the intensity of the 
unbalance force. 
 
Notation  
 
e  eccentricity between journal center and housing center 
c  radial clearance (housing radius - journal radius) 
h  oil film thickness  
L  bearing land length 
η  absolute viscosity 
ε  eccentricity ratio (e/c)  
Φ  attitude angle 
t  time 
g  gravitational acceleration 
m  rotor mass (per bearing land) 

ar  bearing radius 

br  journal radius 

U  unbalance parameter (Fu/mcω2)  
B  bearing parameter (12ηLra

2/mcω2)  
W  rotor weight (per bearing land) 
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W  gravity (or weight) parameter (W/mcω2)  

xw′  load component per unit width perpendicular to line of centers 

zw′  load component per unit width along line of centers 

rF  non dimensional radial fluid-film force (Fr/mcω2)  

tF  non dimensional tangential fluid-film force (Ft/mcω2)  
Fr fluid film force in radial direction 
Ft fluid film force in tangential direction 
Fu unbalance force 
wa,wb velocities of fluid in z direction acting at surface a and b, respectively, (m/s) 
ω rotational velocity of journal about sleeve center when eccentricity ratio is constant (rad/s) 
ωa bearing angular speed of surface bearing (rad/s) 
ωb rotor angular speed of surface journal (rad/s) 
φ  angular distance from the positive x-axis in the fixed x-z coordinate set 
φ m upper limit of the positive pressure 
(') d/d(ωt) 
(.) d/dt 
 
2. Mathematical development  
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Figure 1. Squeeze film damper with dynamic forces and coordinates defined. 
 

The general Reynolds equation governing the flow of the squeeze film oil is well known as (Cameron, 1981, Barret 
and Gunter, 1975, Kirk and Gunter, 1970): 
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where the following assumptions were made: (a) The fluid inertia terms in Navier-Stokes equations have been neglected 
due to their small magnitude; (b) The flow is laminar; (c) The fluid is Newtonian; (d) No slip exists at the fluid-solid 
interface; (e) The flow in the radial direction has been neglected; (f) The inclination of one surface relative to the other 
is so small that the sine of the angle of inclination can be set equal to the angle and the cosine can be set equal to unity. 



 

The general Reynolds equation given in Eq. (1) can be applied to any section of the oil film and in this work only 
the dynamically loaded infinitely wide-journal-bearing solution will be presented. The film thickness can be described 
as (Hamrock, 1994, Bisson and Anderson, 1992, Dubois and Ocvick, 1953): 
 

( )φε cos1+= ch      (2) 
 
if side-leakage is neglected, Eq. (1) can be rewritten and integrated while making use of Eq. (2) which gives: 
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where for (p)∅=0=(p)∅=2π=p, 
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replacing Eq. (4) in Eq. (3), one may write 
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Once the pressure is known, load components can be evaluated. One may determine the components of the resultant 

load along and perpendicular to the line of centers, as: 
 

0

cos
m

x b
dpw r d
d

φ

φ φ
φ

′ = ∫      (6) 

 

0

sen
m

z b
dpw r d
d

φ

φ φ
φ

′ = ∫      (7) 

 
taking into account  Eqs.  (8), (9), (10) and (11) as follows: 
 

2
r rF F mc= ω      (8) 

 
2

t tF F mc= ω      (9) 

 

x tw F L′ =      (10) 

 

z rw F L′ =      (11) 

 
one may write: 
 

2
r zF Lw mcω′=      (12) 

 
2

t xF Lw mcω′=      (13) 

 
replacing Eqs. (5), (6) and (7) into Eqs. (12) and (13) gives: 
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where the bearing parameter B is defined as: 
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3. Governing equations for rigid rotors supported by squeeze film damper bearings 
 

Figure (1) shows schematically a rigid rotor axis within the oil container, under the action of a steady load W due to 
the dead weight of the rotor it supports. Vibration arises from a centrifugal force Fu due to unbalance. The amplitude of 
orbital motion will depend on W, uF , rF and tF .The latter two forces rF and tF t, are those arising hydro-dynamically 
from the squeeze film (Cookson and Kossa, 1979 and Gunter, 1966). 

The following assumptions are made: (a) The rotor is rigid and symmetric; (b) The angular speed of rotation is 
constant; (c) No significant exciting forces are introduced by the rolling-contact bearings. Therefore, one may show that 
the governing  equations of the motion for the rotor-bearing system are:  
 

( ) ( )2 cos cosu rm e e F t w Fω− Φ = −Φ + Φ −&&&      (17) 

 
( 2 ) sen( ) senu tm e e F t w FωΦ+ Φ = −Φ − Φ +&& &&      (18) 

 
Dividing these equations by 2mcω , one obtains  

 
2 cos( ) cos rU t W Fε ε ω′′ ′− Φ = −Φ + Φ −      (19) 

 
( ) tb FWtU +Φ−Φ−=Φ′′+Φ ′′ sensen2 ωεε      (20) 

 
 Replacing Eqs. (14), (15) and (16), into Eqs. (19) and (20) respectively, yields the following non-dimensional form 
of the equations of motion: 
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 The angle ∅m is the upper limit of the positive pressure, which is obtained numerically. Equations (21) and (22) 
of motion of the center journal are numerically solved by Newmark’s method to give the journal position, velocity and 
acceleration. 
 
3.1. Integration of the pressure profile 
 

 The forces arising in the fluid film have been expressed as an integral over the circumference of the journal. 
The forces are given by Eqs. (14) and (15). The expressions under the integral are now representative of the pressure in 
the film and hence will be equated to zero when its value is less than zero. This is equivalent to keeping only those 
pressures greater than ambient. This will avoid the sub ambient pressure contributions that appear in closed-form 
solutions. According to this approach, one needs to calculate the extent of the positive pressure region. Figure (2) 
illustrates the pressure variation along the circumferential positions at several time positions for a case where Fu=0. The 
exact region of film cavitations and the resulting pressure therein are by no means well understood or well defined in 
the literature. Dubois and Ocvirk (1953) argued that in the absence of high datum pressures, the effect of any negative 
pressure (not exceeding atmospheric) could be neglected as being negligible in comparison to the positive pressure 
region. 
 

 
 
Figure 2. Illustration of pressure variation 
 

A numerical method is used to obtain the fluid forces from the integral above. An appropriate method for this 
purpose is the well-known trapezoidal method, which can be expressed as follow: 
 

( ) ( ) ( ) ( ) ( )
0

0
1 22 2

ix
i

x

f x f x
f x dx x f x f x

 
= ∆ + + + + 

 
∫ L      (23) 

 
The error of the above formula is directly related to the increment x∆  and therefore a proper the number of points 

has to be chosen in the evaluation, according to the order of curve that is being integrated. 
 
3.2. Integration of the Equations of Motion 
 

The most basic self-starting method is simply a Taylor Series Expansion truncated after some arbitrary number of 
terms. By truncating the series, which is known as Newmark’s Method (Rao et al., 1995) one may obtain: 
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where δ and β are parameters that can be determined to obtain integration accuracy and stability. When δ=1/2 and 
β=1/4, Eqs. (24) and (25) correspond to the linear acceleration method. 

All variables in Eqs. (21) and (22) have to be considered at the same time step. For this purpose they are written as  
 



  

2
t t t t t t t tε ε γ+∆ +∆ +∆ +∆′′ ′− Φ =      (26) 
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Solving Eq. (25) for t tx +∆&& in terms of t tx +∆  and then replacing t tx +∆&&  into Eqs. (26), one can obtain equations for 

t tx +∆&&  and t tx +∆& , each one in terms of the unknown displacements t tx +∆  and the previous velocity and acceleration. 
Replacing the second derivatives in Eqs. (26) and (27) properly, according to Eqs. (28) and (29) below, one may obtain 
Eqs. (30), (31), (32) and (33). 
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4. Results 
 

A computer code, based on Newmark approach, was written. Eqs. (30) and (32) are solved simultaneously, and 
therefore, an interactive routine had to be created to get convergence at each time step. 

Some cases were devised and for each case one or more system parameters were varied. These cases and the 
correspondent parameters values are listed in Tab. (1): 
 
Table (1). System parameters for a rigid rotor supported in squeeze-film damper bearings. 
 

 Case I Case II Case III Case IV Case V Case VI Case VII
Initial eccentricity (e/c) 0.8 0.8 0.8 0.8 0.8 0.8 0.8 
Journal weight (kg) 33.6 33.6 33.6 33.6 33.6 33.6 33.6 
Clearance (m) 2.540e-4 2.540e-4 2.540e-4 2.540e-4 2.540e-4 2.540e-4 2.540e-4
Bearing radius (m) 2.540e-2 2.540e-2 2.540e-2 2.540e-2 2.540e-2 2.540e-2 2.540e-2
Bearing length (m) 5.080e-2 5.080e-2 5.080e-2 5.080e-2 5.080e-2 5.080e-2 5.080e-2
Unbalance force (N) 100.0 100.0 100,0 100,0 300.0 100.0 100.0 
Journal speed (rpm) 2000 6000 2000 5000 5000 2000 4000 

Viscosity ( 2/ mNs ) 2.622e-3 2.622e-3 8.276e-3 8.276e-3 8.276e-3 2.530e-2 2.530e-2



 

 
 
Figure 3. Case I: ε=0.8, W=33.6 kg, c=2.54e-4 m, rb=2.54e-2 m, L=5.08e-2 m, Fu=100 N, Vb=2000 rpm, 
η=2.622e-3 Ns/m2. 
 

 
 
Figure 4. Case II: ε= 0.8, W=33.6 kg, c=2.54e-4 m, rb=2.54e-2 m, L=5.08e-2 m, Fu=100 N, Vb=6000 rpm, 
η=2.622e-3 Ns/m2. 
 

 
 
Figure 5. Case III: ε=0.8, W=33.6 kg, c=2.54e-4 m, rb=2.54e-2 m, L=5.08e-2 m, Fu=100 N, Vb=2000 rpm, 
η=8.276e-3 Ns/m2. 
 



  

 
 
Figure 6. Case IV: ε=0.8, W=33.6 kg, c=2.54e-4 m, rb=2.54e-2 m, L=5.08e-2 m, Fu=100 N, Vb=5000 rpm, 
 η=8.276e-3 Ns/m2. 
 

 
 
Figure 7. Case V: ε=0.8, W=33.6 kg, c=2.54e-4 m, rb=2.54e-2 m, L=5.08e-2 m, Fu=300 N, Vb=5000 rpm, 
 η=8.276e-3 Ns/m2. 
 

 
 
Figure 8. Case VI: ε=0.8, W=33.6 kg, c=2.54e-4 m, rb=2.54e-2 m, L=5.08e-2 m, Fu=100 N, Vb=2000 rpm, 
η=2.53e-2 Ns/m2. 
 



 

 
 
Figure 9. Case VII: ε=0.8, W=33.6 kg, c=2.54e-4 m, rb=2.54e-2 m, L=5.08e-2 m, Fu=100 N, Vb=4000 rpm, 
η=2.53e-2 Ns/m2. 
 
5. Conclusion 
 

Performing a preliminary analysis of the results for the motion, one may verify, that in a situation where the 
unbalanced force is not taken into account, the rotor center converges to a steady-state position at a certain eccentricity 
and attitude angle. Under certain circumstances, journal develops a characteristic eccentric orbit. Figure (2) illustrates 
the variation of the pressure profile, and most important, the variation of the limits of the positive pressure. The increase 
on journal speed, as one can compare Case I and Case II, results in a more centralized orbit. Case: III, IV, V, VI and VII 
consider the same clearance, bearing radius, and bearing length. For such cases, the increase in journal speed, 
comparing Case IV to Case III, results also in a more centralized orbit, although in these cases, the orbit increased in 
size. The increase of the unbalanced force in Case V produced less consistent orbits. In Case VI, the unbalanced force 
and the journal speed were reduced, which produced a smaller and more centralized orbit. In Case VII, the journal 
velocity was set to 4000 rpm, producing a final less eccentricity orbit. One may conclude that all the listed parameters 
interfere on the journal behavior. The size, position and shape of the orbit are a result of the combined values of these 
parameters. It can be shown that in the absence of unbalance forces, the journal center converges to a steady position. 
Under special circumstances one can obtain instability of the journal. 
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