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Abstract. The objective of this work is to investigate the performance of a smart helicopter blade. Developments of smart materials 
for both sensing and/or actuation work provided a novel alternative in vibration control. The blade is modeled by the finite element 
method, considering the motions of flapping, lead lagging, axial stretching, and torsion. The blade model also considers a pretwist 
angle, offset between mass and elastic axes and isotropic material. A helicopter blade mathematical model is developed and it 
allows the incorporation of piezoelectric actuators distributed along the blade span. The active vibration control is based on the 
premise of individual blade control and the investigation is carried out for hovering flight condition The finite element matrices are 
obtained by energy methods and a linearization procedure is applied to the resulting expressions. The linearized aerodynamic 
loading is calculated for hover and the state-space approach is used to design the control system. The eigenstructure assignment by 
output feedback is used in the blade-reduced model resulting from the application of the expansion method by partial fractions. The 
simulations for open and closed-loop systems are presented, having exhibited good response qualities, what shows that output 
feedback is a good alternative for smart helicopter blade vibration attenuation. 
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1. Introduction  
 

Rotary wing aircraft are typically subjected to vibrations. The main source of these vibrations is the rotor, which is 
formed by flexible blades excited by periodical aerodynamic and inertial loads. These vibrations are transferred to the 
vehicle structure and usually create a hostile environment for other devices, crew, or even passengers. Significant 
amount of research work has been developed to look for solutions to the vibration problems, and considerable progress 
has already been reached. 

Among the ways to reduce vibration problems in helicopters, the passive and active control could be mentioned. 
The former tries to control the helicopter oscillatory response through an accurate structural design, e.g., using 
optimization techniques or by installing devices in the rotor or fuselage in order to absorb, or isolate, the vibration 
sources (Reichert,1981; Loewy 1984). The later uses the techniques from automatic control systems. Friedmann (1990) 
presents a good view on the development of these techniques applied to helicopters. 

The recent developments in smart materials have provided a promising framework to attaining automatic vibration 
control in helicopters. Smart materials exhibit induced-strain under the action of an electric or magnetic field. Most 
common smart or active materials are the piezoelectric, electro and magnetostrictive alloys, and the electro- and 
magneto-rheological fluids (Crawley, 1994). Helicopter applications of smart materials appear as a viable alternative in 
vibration control. Two methodologies for the application of smart materials have been investigated, that is: (1) 
distributed induced-strain actuators; (2) discrete actuation of a servo-aerodynamic control surface. 

Induced blade twist by means of smart materials embedded in the structure has been investigated. A number of 
theoretical works have been developed to estimate the degree of twist required to affect flutter and vibration reduction 
benefits (Nitzsche and Breitbach, 1992; Nitzsche, 1994). Rotor blade flap actuation has been investigated as an 
alternative approach to achieving induced-strain rotor blade vibration attenuation. Theoretical studies have been 
performed and innovative concepts for servo-flaps presented (Millott and Friedmann, 1994). 

From automatic control systems applied to helicopter vibration control, the modern control theory has been much 
used these days. Takahashi and Friedmann (1991) have considered the rotor-fuselage coupling model. Nguyen and 
Chopra (1990) consider only the rotor and the control is applied by exciting the blade with higher harmonics of the 
blade rotational speed, the so-called, higher harmonic control - HHC. The eigenstructure assignment technique is an 
alternative for control, where the eigenstructure of a desired closed-loop system and assessing gain matrices can be 
assigned. For helicopter vibration reduction this approach can be seen in Straub and Warmbrodt (1985) who used state 
feedback, but no other work using the eigenstructure assignment was found. The eigenstructure assignment technique 
makes possible to have a better insight of feedback gains assessment and it is more appropriate for multivariable 
systems.  

The objective of this work is to investigate the application of piezoelectric actuators embedded in a helicopter blade 
structure to promote active control of vibrations. The helicopter blade is considered as a cantilever-rotating beam 
undergoing bending-torsion coupling motions. The finite element method has been used to model the hingeless blade, 
which had its order reduced by the method of expansion of partial fractions. Piezoelectric actuation and aerodynamic 
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loading are also incorporated to the model. The eigenstructure assignment by output feedback for vibration control of a 
helicopter blade is applied. The gain matrix has been calculated by the blade-reduced model using the output feedback. 
Assigned and achieved eigenvalues used for the control design have shown good agreement, assuring the success of the 
control law. Simulations of the open and closed-loop systems have also been presented and discussed. 

 
2. Mathematical Modeling 

 
The blade studied here is modeled as a rotating cantilever beam with length R, undergoing the coupling motions of 

flapping, lead-lagging, axial stretching and torsion and was based on Marques (1993). A pretwist angle θt is adopted in 
the model, considered null in the blade root and varying linearly through the span. It is also supposed that elastic and 
mass axes are noncoincidents. 

The main coordinate systems of the blade model are shown in Figs. (1) and (2). Figure (1) shows the main 
coordinate system x, y and z, that is fixed in the blade root with its origin in the intersection of blade root cross-section 
and elastic axis. When the blade is not deformed the x-axis is exactly coincident with the elastic axis. Figure (1) also 
shows the deformed blade and elastic displacement u, v and w, in the x, y and z directions, respectively. Figure (2) 
shows an arbitrary blade cross-section and its local coordinate system η and ζ. The torsional deflection φ, due to the 
blade deformation can also be seen. 

 

 
 

Figure 1 - Blade coordinate system and elastic displacement 
 

 
 

Figure 2 - Cross-sectional coordinate system 
 
 

2.1. Strain and kinetic energy 
 
The strain energy, considering a rotating beam undergoing axial stress, shear in the lead-lagging plane and in the 

flapping plane, is given by: 
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where EA, EIy,  EIz and GJ are the axial, lead-lagging, flapping and torsional stiffness, respectively. The term Fc is the 
centrifugal effect and is a function of the mass (m) and the blade rotational speed (Ω): 
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To obtain the kinetic energy expression, the approach presented by Magari et al. (1988) is also used here. 
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The velocity of an arbitrary point in the blade cross-sections is given by: 
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The coordinates (x1, y1, z1) of an arbitrary point in the deformed blade cross-section are the same as shown by 

Marques (1993). The kinetic energy is obtained by substituting the Eq. (4) in the Eq. (3) and calculating the double 
integrals for the blade cross-section areas. The resulting expressions are far too long, so for the sake of brevity they 
have been withdrawn and the reader must refer to Marques (1993) for the respective expression. 

 
 

2.2. Aerodynamic Loading 
 
The steady aerodynamic approach was adopted to yield the expressions of lift (L), drag (D) and aerodynamic 

moment (M) in the hovering flight condition. Some simplifications were adopted. The first one is neglecting the induced 
velocity, which yields a free airflow velocity parallel to the y-axis. The small displacement consideration results in the 
assumption that the blade cross-section remains parallel to the yz plane. There is no coincidence between mass and 
elastic axes, but the aerodynamic center is taken at the same point of the elastic axis and cross-section intersection. The 
profile NACA 0015 was assumed; therefore the aerodynamic and the pressure center of the blade cross-section are the 
same. 

A blade element of dx length was taken and the corresponding load element was calculated. Considering that the 
blade elastic displacements in the free air flow and supposing an operational region of the blade angle of attack, an 
expression representing the aerodynamic loading results as follows: 
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where, e is the offset between elastic and mass axis; ρ

ar
 is the air mass density; c is the blade cross-section chord; θ

P
 is 

the command pitch angle; Θ
0
 is the nominal value of pitch angle in the operational region (10° in this work). 

 
2.3. Piezoeletric Actuation 

 
Piezoelectric materials are those with the ability to generate mechanical displacements due to the application of 

electrical charge and vice-versa. That electro-mechanical coupling has been more recently utilized in favor of the smart 
structures concept (Crawley, 1994). Intense loads at high frequencies allow the use of the new piezoelectric actuator 
technology to control of structures, serving as a motivation to aeroelastic control practices. 

For piezoelectric materials the constitutive equations are coupled (Premount, 1997): 
 

( )
l

lE

EdD

dE

κσ

σε

+=

+=
*

1

           (7) 

where, ε is the strain, E is the Young’s modulus (at constant electric field), σ is the stress, d is the piezoelectric constant, 
El is the electric filed, D* is the dielectric displacement, and κ is the permittivity under constant stress. Piezoelectric 



 
constants are related to the polarization and strain directions. Therefore, d31 is normally assumed as the piezoelectric 
constant for the case of electric field applied perpendicular to the plane of the associated mechanical strain. 

The piezoelectric actuators in the form of strips can be bonded on the structure, and that geometrical arrangement 
is such that d31 dominates the design and the useful direction of expansion is normal to that of the electric field. 
Considering a beam-like smart structure, piezoelectric strips (with thickness hp) can be used as actuators by controlling 
the voltage V applied to the electrodes, creating a constant electric field El = V / hp . 

The equilibrium equation of a beam is given by: 
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where m is the beam mass per unit length, w is the beam vertical displacement and M is the bending moment. 

According to the Euler-Bernoulli assumption, the axial deformation and curvature are related by: 
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where z is the distance to the neutral axis.  

The bending moment is given by: 
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where EI is the bending stiffness referred to the supporting structure and piezoelectric strip, Ep is the piezoelectric 
Young modulus, V is the applied voltage, bp is the piezoelectric strip width, and h is the half-value of the beam 
thickness. 

Equation (10) leads to an expression to the concentrated bending moment Mp at the boundaries of the piezoelectric 
actuator. The piezoelectric moment is, then, given by:  
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3. Finite Element Model 
 
The finite element discretization is done in terms of beam elements, with two nodes at each end having six degrees 

of freedom: displacements in the x, y and z directions, rotation in the xy, xz planes and in the cross-section plane. The 
nodal displacements (generalized coordinates) form the q vector and are related with blade displacements through the 
following equations: 
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where H1(x) through H6 (x) are the shape functions given by third degree Hermitian polynomials, which are the same as 
in Magari et al. (1988). 

Now, the matrices Me, Ge and Ke, of each finite element can be obtained. Each coefficient mij, gij and kij, for i,j = 
1,2,...n, is obtained by substituting Eq. (12) in the expressions of the strain and kinetic energy. However, these 
coefficients are not linear in q. Linearization occurs through the assumption of small motions about the equilibrium 
point (Meirovitch, 1990), what yields the following expressions for the coefficients: 
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The same procedure is done in order to obtain the loading vector Q. By substituting Eq. (12) in Eq. (6), nonlinear 

loading expressions are obtained and linearized next. This loading vector Q is composed by two parts. A first one 



 
depends only of control inputs (voltage, V, to the piezoelectric actuator) and a second one depends only of system 
generalized coordinates. 

The system matrices are formed (Meirovitch, 1990) by superposing each Me, Ge and Ke, respectively, and 
considering the system constraints. The damping effect has been introduced to the model by using the Rayleigh 
approach (Clough and Penzien, 1975) and a damping factor of ξ = 0.05. 

The mathematical model obtained results in the following matricial equation of motion: 
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4. State Space Representation and Model Reduction 
 
Viewing the applications in control, it is convenient to transform the Eq. (14) into state-space representation. Then, 

taking the state vector x(t) = [ qT  (dq/dt)T ]T, and premultiplying the Eq. (14) by M-1, it follows that: 
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where A is the state matrix and B is the input matrix. The loading vector Q, when represented in state-space form can be 
written as Q1 x(t) + Q2 u(t), where u(t) is the control input vector. 

Taking each part of the loading vector and applying in Eq. (15) results: 
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where A1 = A + B Q1 , B1 = B Q2 , y(t) is the output vector and C is the output matrix. 

The high order of original blade model makes it necessary to use a reduction procedure. The technique adopted 
here is the same as that described by Marques (1993). It uses the original system represented in the for of a transfer 
function matrix written as a partial fraction expansion: 
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where the h1j, f1j, are the matrix A1 right and left eigenvectors, respectively, and the λ1j are the matrix A1 eigenvalues. 

Selecting a convenient set of r eigenvalues, which will remain in the Eq. (17), and applying the appropriate 
transformation, the result is the reduced orthonormal eigenvectors U and V, which are applied to the Eq. (16) in terms of 
xr(t) = V x(t). Then, the reduced order model obtained is: 
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where, Ar = V A1 U ,  Br = V B1 , Cr = C U and Dr is given by those eigenvalues of A1 that were neglected from the 
system. 
 
4. Control Law Design via Eigenstructure Assignment 

 
The control strategy was idealized for the case of a typical blade pitch control linkage. At a first moment an ideal 

actuator is placed at the pitch control rod and its action on the blade pitch depends on the measure of displacements or 
velocities got from some sensors placed along key points of the blade span. Therefore, the idea is to control vibrations 
on the blade through changes of its pitch angles. 

The eigenstructure assignment by output feedback is applied to yield a gain matrix R that leads to the control 
system described above. Due to the size of the original system given by the Eq. (16), the control law will be applied to 
the reduced one. 

For output feedback and for the case of a regulator, the control inputs are: 
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Substituting the Eq. (19) in the Eq. (18) and working algebraically, one reaches the following closed-loop equation: 
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For assessment of the matrix R, a set of eigenvalues and eigenvectors must be assigned in order to yield the desired 

time response characteristics of the closed-loop system. Therefore, for each eigenvalue and its respective eigenvector, it 
must be taken the null space of [(Ar  - λjd I)  Br ] (for j=1,2,..,n) that gives another vector, where after its 
decomposition results in: 
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where p is the number of assigned eigenvalues and vd and qd result from the null space of [ (Ar - λjd I)  Br ]. 

From Eq. (21), one obtains: 
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where [ ]+ represents the Moore-Penrose pseudo-inverse, since the number of assigned eigenvalues may be different of 
the number of measured outputs. 
 
5. Results and Discussion 
 

To apply the vibration control strategy a hingeless blade model is assumed. The blade length is 4.09 m, and mass of 
2.3 kg/m. The flight condition is hovering with a rotational speed of 360 rpm. Other parameters of the problem are: axial 
stiffness: EA=5.09×107 N; shifting between CG and elastic axis: e = -0.01013 m; torsional stiffness: GJ = 2.28×104 Nm; 
flapping stiffness: EIy = 3.22×103 Nm2; lead-lagging stiffness: EIz = 1.18×105 Nm2; radius of gyration: km1=0.008Ns2; 
km2=0.04Ns2. 

The piezoelectric actuator is adopted as the typical PZT (lead zirconate titanate) that presents the following 
properties: d31 = -150 m/V; Ep = 50 GPa. The piezoelectric strip has been assumed with width of 0.01 m, ideally bonded 
to the main structure of the blade. The actuator length has been taken to coincide with the length of a finite element of 
the blade model. 

The finite element blade model is composed by ten elements all with same length. The actuator loads are 
considered to be applied at the nodes 3 and 4. The reduced model has been applied considering the first 5 modes with 
the effect of aerodynamic loading (aeroelastic coupling). It leads to a reduced model with dimension equals to 10. The 
choice of the frequencies results from the fact that the vibratory behavior of blade is more significant at low 
frequencies. 

The sensors have been placed on node 4, measuring the flapping and lead-lagging velocities on nodes 5, 7, 9 and 11 
(blade tip), the torsional gyro ratio on node 7 and the torsional gyro on node 11. These sensors outputs are directly 
related to the output feedback control strategy. The criteria for choosing those nodes have been based on the fact that at 
the blade tip, the displacements as well as the velocities are more significant quantities. An increased blade damping is 
desired to the resulting closed-loop system, and this is achieved by feeding-back velocity quantities. By measuring 
torsional variables, such as, gyro ratio and gyro on blade tip, one can ensure quick stabilization on torsional motion. 
This fact is, in principle, important in order to avoid blade stall or even flutter problems. 

The next step towards the closed-loop system assessment is to assign the eigenstructure, namely, eigenvalues and 
eigenvectors. The desired time response, frequencies and damping factors for the closed-loop system were the main 
factors for the eigenvalues choice. Table 1 shows the assigned (desired) and the achieved eigenvalues for the closed-
loop system. The achieved eigenvalues are rigorously identical to the assigned ones. 

 
 

MODES 
(reduced order) 

Assigned 
Eigenvalues 

Achieved 
Eigenvalues 

1 -4.2654 ± 50.182 i -4.2654 ± 50.182 i 
2 -9.6309 ± 120.39 i -9.6309 ± 120.39 i 
3 -14.083 ± 180.55 i -14.083 ± 180.55 i 
4 -15.042 ± 200.56 i -15.042 ± 200.56 i 
5 -21.052 ± 300.74 i -21.052 ± 300.74 i 

 
Table 1 – Assigned and achieved eigenvalues. 



 
 

For the eigenvectors, since there is only one control input, it is not possible to modify them. 
Next, the simulations of blade motions to initial conditions for open and closed-loop are presented in Figs. (3) to 

(5). Figure (3) presents the response in lead-lagging motion (v(t))for open and closed-loop cases , respectively. Figures 
(4) and (5) shows the blade flapping and torsional motion responses for both open and closed-loop cases, respectively. 
For all the cases, it can be observed effective control actions in reducing vibrations. Overshooting controlled responses 
can be observed, as well as settling time the order of 0.5 s. Actions to improve both controlled responses features shall 
be considered in further investigations. 
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Figure 3 – Blade lead-lagging motion responses for the open and closed-loop cases. 
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Figure 4– Blade flapping motion responses for the open and closed-loop cases. 
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Figure 5 – Blade torsional motion responses for the open and closed-loop cases. 

 
6. Conclusions 
 

This work has presented a study on the application of piezoelectric actuators in the vibration control of helicopter 
blade. The control law has been assessed with the eigenstructure assignment by output feedback technique. The blade 
has been modeled by the finite element method. Aerodynamic loading is included to the model to allow aeroelastic 
coupling. The piezoelectric actuation has been introduced by means of applying voltage-induced moments at specific 
model nodes. Reduced order model has been produced to speed-up the simulations, as well as to concentrate 
eigenstructure assignment to the structure modes of interest. 

As a form of reducing the vibration on a helicopter blade, the eigenstructure assignment by output feedback shows 
to be efficient, and a promising alternative for further studies. The technique has affectively led to a control system with 
eigenvalues (dynamical features) identical to the desired ones. The closed-loop responses have shown good 
characteristics for both overshoot and settling times. Piezoelectric actuation has proved to be efficient for the case of 
suppressing helicopter blade vibrations. Further investigations shall concentrate on improving closed-loop responses and 
on investigating a form of validating the model and the concept of smart blade for practical applications in aeronautical 
engineering. 
 
7. Acknowledgements 
 

The authors wish to acknowledge the financial support of the Brazilian Research Agency CAPES/CNPq (grant 
520356/00-4) and the São Paulo State Research Agency FAPESP (97/13323-8). 
 
8. References 
 
Clough,R.W. and Penzien,J., 1975, "Dynamics of structures", McGraw-Hill, New York, USA. 
Crawley, E., 1994, “Intelligent structures for aerospace: a technology overview and assessment”, AIAA Journal, V. 32, 

pp.1689-1699. 
Friedmann, P.P.,1990, “Helicopter rotor dynamics and aeroelasticity: some key ideas an insights”, Vertica, Vol. 14, pp. 

101-121. 
Loewy, R.G., 1984, “Helicopter vibrations: a technical perspective”, Journal of American Helicopter Society, Vol. 29, 

pp. 4-30. 
Magari, P.J., Shultz, L.A. and Murthy, V.R., 1988, “Dynamics of helicopter rotor blades”, Computer & Structures, Vol. 

29, pp. 763-776. 
Marques, F.D.,1993, "Analysis and Vibration Control of a Helicopter Rotor Blade"., M.Sc. Dissertation, USP, Brazil, 

215 p. 
Meirovitch, L., 1990, "Dynamics and control of structures", John Wiley & Sons, New York, USA. 
Millott, T.A. and Friedmann, P.P., 1994, “Vibration reduction in hingeless rotors in forward flight using an actively 

controlled trailing edge flap: implementation an time domain simulation”, Proc. of the 35th 



 
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and materials Conference, Hilton Head, USA, 
April 21-22, paper AIAA-94-1306-CP. 

Nguyen,K. and Chopra,I., 1990, “Application of higher harmonic control to rotors operating at high speed and thrust”, 
Journal of American Helicopter Society., Vol.35, pp. 78-89. 

Nitzsche, F. and Breitbach, E., 1992, “Individual blade control of hinged blades using smart structures”, 18th European 
Rotorcraft Forum, Avignon, France, Sept. 15-17, pp.E6.1-E6.13. 

Nitzsche, F., 1994, “Design efficient helicopter individual blade controllers using smart structures”, Proc. of the 35th 
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and materials Conference, Hilton Head, USA, 
April 21-22, paper AIAA-94-1766-CP. 

Preumont, A., 1997, "Vibration Control of Active Structures", Kluwer Academic Publishers, Netherlands. 
Reichert, G., 1981, “Helicopter vibration control: a survey”, Vertica, Vol. 5, pp.1-20. 
Straub, F.K. and Warmbrodt, W., 1985, “The use of active controls to augment rotor/fuselage stability”, Journal of 

American Helicopter Society, Vol. 30, pp. 13-22. 
Takahashi, M.D. and Friedmann, P.P., 1991, “Helicopter air resonance modeling and suppression using active control“, 

Journal Guidance, Control and Dynamics, Vol. 14, pp. 1294-1300. 
 
 

9. Copyright Notice 
 
The authors are the only responsible for the printed material included in this paper. 




