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Abstract. This paper shows distinctive features and some results obtained with a new numericd methodology for Computational
Fluid Dynamics (CFD), which isthe result of the right combination of Bond Graph concepts with elements of Numerical Methods.
This methodology was used so far to model single-phase, single-component and single-phase, multicomponent flows. The main
characteristics of this new methodology, called BG-CFD, are summarized. Some results of one-dimensional, single-component
problems corresponding to heat conduction, convection-diffusion and compressible flows are discussed, showing that this
methodology is a foundation d a bridge between Bond Graphs and CFD.
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1. Introduction
1.1. Bond Graphsand CFD

In order to solve multidimensiond problems with the aid o computer programs, it is important that these models
can be implemented numericdly. This task, main concen of the area of Computational Fluid Dynamics (CFD), is
performed by systematically discretizing the cntinua, that is, by replacing the continuous variables by a combination of
a finite set of nodal values and interpolating functions. The result is a (generaly nonlinea) algebraic approximation,
instead o the original differential or integro-differential problem.

The Bond-Graph formalism allows for a systematic approach for representing and anayzing dynamic systems
(Karnopp et al., 2000). Dynamic systems belonging to different fields of knowledge, like Eledrodynamics, Solid
Medhanics or Fluid Medhanics, can be described in terms of a finite number of variables and besic dements.

In the field of Fluid Dynamics, the potential benefits of Bond Graphs have not been yet fully exploited. The
applications made so far dealt with problem restrictions such as the negled of inertia terms (which amounts for the
major non-lineaities), very simple flow geometries or the use of the so-called "pseudo bond graphs'. Besides, the
applications to fluid dynamic systems were not oriented to a systematic spatial discretization of flow fields, typical of
CFD problems.

The firg attempt to apply Bond Graphs to CFD problems appeaed in (Fahrenthold & Venkataraman, 1996),
although the formulation was restricted to prescribed shape functions and nodalization. Besides, heat conduction (which
leads to convedion-diffusion problems) was not model ed.

It iswell known that the Bond Graph representation depictsin a very elegant way the amnservation of energy in the
various forms in which it may appea in a given dynamic, lumped-parameter system. The definition of suitable
generalized effort and flow variables, based on the system total energy, al ows to obtain the state equationsin an orderly
fashion.

1.2. Motivation

In aprevious work (Balifio et al., 2001) atheoretical development of a new methodology for CFD in asingle-phase,
single-component flow was presented, which isaresult of the right combination of Bond Graph concepts with elements
of numerical methods. This methodology, called BG-CFD, was successfully applied to ane-dimensional convedion-
diffusion (Gandalfo et al., 2001) and compressble problems (Gandolfo et al., 20(). In other contributions (Balifio,
2001b; Balifio, 2002), it was shown that BG-CFD includes Control Volumes and Finite Differences as particular cases
of the linearized state equations. Recently, BG-CFD was extended to single-phase, multicomponent flows (Balifio,
2003; Balifio, 2003b). The mativation of this paper isto show distinctive features and some results obtained so far with
this methodology. The mathematical expressons shown in this paper correspond to the single-phase, single-component
flow problem.

2. The BG-CFD Methodol ogy
2.1. Definition of the Independent Variables

Since BG-CFD is a power conserving approach, it is esential to have a representation of the total energy per unit

volume ev =u, + t;, where u,, istheinterna energy per unit volume and t; = % V 2 isthe kinetic coenergy per unit

volume. We choose the density p, the entropy per unit volume s, and the velocity V as the independent variables.
From thisrepresentation, the power balance per unit volume @an be written as:
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In Eq. (1) and (2) Y is the Gibbs free @ergy per unit mass K is the kinetic coenergy per unit mass 6 is the
absolute temperature and p, isthe linea momentum per unit volume; in Eq. (2), P isthe absolute pressure.

The terms that multiply the time derivatives of the independent variables can be regarded as potentials, which play
the role of constitutive relations neaded to close the problem. This potentials are not independent functions, but their
mixed partial derivatives are related through the Maxwell relations of Thermodynamics (Call en, 1960).

An dternative formulation can be derived by taking p, instead o V as independent variable. In this case, the

formulation would be symmetric, in a sense that the volume integrals of the independent variables would result in the
system mass linea momentum and entropy. Nevertheless we doose the velocity becuse it is more popular as
discretized variable and because the resulting expressons are easier to calculate.

The feasibilit y of presenting the total energy asa sum of product of potentiads times time derivatives of independent
variables is not a trivial isale. In the field of Turbulence (Wilcox, 2000, for instance, the dynamics is formulated in
terms of time-averaged variables and fluctuations. In the field of Multiphase Flow (Drew & Passman, 1999), the
average processis more sophisticated because, besides turbulent effeds within each phase, the position of the interfaces
isnot known, resulting in variables such asthe void fraction or the interfacial areaper unit volume. A representation of
the mean total energy for these problems would be very useful.

2.2. Balance Equations

The balance auations are power equations (per unit volume) corresponding to each one of the terms that
contributes to the time derivative of the total energy per unit volume, Eq. (1). The balance ejuations can be oltained
starting from the @nservation eguations (mass medianicd energy, therma energy) (Whitaker, 1977) and the
constitutive relations, resulting:
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where  isthehed flux, @ isthehed sourceper unit massand z isthe viscous dresstensor.

One of the key isaies in modeling fluid dynamic systems with inertia, viscous, compresshle and thermal effedsis
the right understanding of the transformation of the different forms of energy (mechanicd, thermal) and the generation
of irreversibility. The balance euations show one of the advantages of this methodology, that is, the representation of
the power structure of the system. In the balance ejuations there can be identified three type of terms. divergence
source and coupling terms. The divergence terms take into account the power introduced in the system through the
boundary conditions. The source terms constitute the different power sources, externa to the system. Finaly, the
coupli ng terms represent power transfer between the velocity, massand entropy eguations; these cupling terms appea,
with opposite signs, in peirs of balance ejuations. Taking into acoount Eq. (1) it verifies that coupling terms cancd out
when the balance ejuations are added, resulting:
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The cancdlaion of the cupling terms means that they influencethe distribution among the power terms of Eq. (1) but
not the total power in the system.

2.3. Discretization of the Flow Fidds

In order to formulate the discrete model of the fluid continuum in the domain Q , it is necessary to spedfy the
description of the flow fields corresponding to the independent variables. In BG-CFD this is done, in the same fashion
as in Finite Elements, in terms of a finite set of nodal values and interpolation functions. With this only restriction, we

are freeto choaose different types of grids. Assuming N, density nodes, N entropy nodes and N, velocity nodes, we
have:
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wherer isthe position, P S and V aretime-dependent noda vedors, while 9, & and ﬂ are the crresponding
positi on-dependent noda vedors of interpolation or shape functions. Based on this definition, we define the noda
vectors of mass m and entropy S as.
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where Q, and Q_ are correspondingly diagona volume matrices associated to the density and entropy per unit volume.

The system mass mand entropy Sarerelated to these nodal vedors as foll ows:
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2.4. System Power Balance

Since the nodal vedors of mass and entropy are proportiona to the nodd vedors of discretized variables, it is
possble to write the system total energy E~ as:

E'=UmS)+T (mV) ; U=[ud2 ; T =[tdo (10)

where U and T~ are @rrespondingly the system internal energy and system kinetic coenergy. The kinetic coenergy
can be written asabilinea form, involving theinertiamatrix M , as
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Analogoudly to the power per unit volume, Eq. (1), the system power can be expressed as.
E'=(W+K) .m+@".S+p"V (12

where , K, © and p are orrespondingly nodal vedors of Gibbs free @ergy per unit mass kinetic coenergy per
unit mass absol ute temperature and linear momentum, defined as.
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According to Eq. (14), the nodal vedor of linea momentum can be regarded as a system volume integral of the
local values weighted by the velocity interpolation function. It can be easily shown that the system linea momentum
can be obtained as:
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The potentials appeaing in Eq. (12) definge, as in the mntinuous case, congtitutive relations corresponding to the
discrete or lumped-parameter prolbem; these potentid s a so satisfy the Maxwell relations.
It can aso be shown that the volume integrals of the left side terms of Eq. (3) to (5) can be @lculated as:
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2.5. State Equations

The system state equations are ohtained by integrating in volume the balance euations, Eq. (3) to (5). The expressons
for the system state equationsare:
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The different terms in the system state equations (17) to (19) arise from integrations over the domain volume Q or
the domain boundary I . Their definitionsare;
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In Eq. (20) to (26) diagona matrices are defined, whose dements are the components of the nodal vedors & , K
and O
Y=(¥), =% 0 : K=(K),=K, 3, : @=(0),=63, (27)
In Eq. (20) to (24), w, and w, are noda vedors of weight functions corresponding to density and entropy per unit

volume; these weight functions are introduced to satisfy the power interchanged by the system through the boundaries,
aswdl asto share theimportance of the power terms, appeaing in the balance ejuations, among neighboring nodes. In
the discretization procedure, each component of the right side terms of the massbalance ejuation and entropy balance
equation were multiplied correspondingly by w,, and w, before integrating in volume; although this procedure has

the advantage that the stealy-state balance ejuations are satisfied locally for the different nodes, other strategies are
possble and should be investigated. It will be shown later how these weight functions can be used to handle the
upwind nature of the fluid equations. It is interesting to notice that no weight functions are nealed for the velocity state
equations.

It is clea that theresulting state eguations, which are non-linea, are olbtained foll owing a different approach than in
other numerical methods. Although they are used nodal values and interpolation and weight functions, which could
resemble what is done in the Finite Element Method, the state equations are not obtained from a minimization of any
functional. The state equations are not ohtained either from any scheme like the ones used in Finite Differences. Finally,
the state variables do not correspond to the integrated variables in a control volume, except for the particular case of
uniform (unity) interpolation functions.

The state equations are different from the ones ohtained with other popular numericd methods. The main
characteristic of this methodology is the mnservation of different power flows in the system, while the system mass
linead momentum and entropy can be @lculated as the sum of the crresponding nodal values.

2.6. Boundary and Initial Conditions

All kind d boundary conditions are handled consistently through the terms representing surface integrals (r'ns\,r )
SérF) and FT(F) ). Initial conditions can be defined by readily specifying the noda values of the states variables as:
mt=0=m, ; St=0=S, ; V({t=0=V, (28)

Alternatively, if spatia functions for density, velocity and entropy per unit volume ae spedfied for theinitial time,
the nodal values must be determined in order to conserve the system mass linea momentum and entropy, resulting:
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2.7. Coupling Matrices

The @upling terms appearing in the balance ejuations shown in Sedion 2.2, when integrated in volume, give raise
to power terms that can be expressd as the product of different pairs of nodal vedors. Since these power terms are



conserved, there must be ardationship between the nodal vedor involved. The representation of these relationshipsis
performed throughthe @wupling matrices.

It can be shown that the cupling terms appeaing in the velocity and mass $ate equations %t the following
relationships
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where M, isaredanguar matrix (n p fows and n, columns). For the cupling terms appeaing in the entropy and

mass $ate equations, therelationships are:
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where M. is a redanguar matrix (np rows and n_ columns). Finally, for the coupling terms appeaing in the

vel ocity and entropy state equations, therelationships are:
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where M, isaredanguar matrix (n, rowsand n_ columns).

Since the coupling matrices are not inversble, they set restrictions on the allowable input nodal vedors. It can be
seen in Eq. (30) to (32) that the nodal vedors of massrate and entropy rate are output variables.

3. System Bond Graph

Although no mention was made so far in the presentation of BG-CFD, the methodology was developed based on
the Bond Graph theory. The power structure of the system can be depicted very elegantly in the Bond Graph shown in
Fig. 1; through this figure, various concepts and drawing conventions can be introduced.

In the Bond Graph shown in Fig. 1, there can be identified dfferent el ements with ports conneaed by bonds, which
are drawn as arrows. In each bond we have a pair of generalized effort and flow variables. The bond orientation
indicates the diredion of power flow when the inner product of these variables is positive. In addition, the dfort
variableis represented to the side of the bond inclined stroke.
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Figure 1. System Bond Graph for a single-component, single-phase flow.

The representation of the system total energy E’ as an exact differential of the state variables m, S and V. define

an energy-storing dement known as multibond IC-field (drawn as |1 C); thisfield hasainertial port and two capacitive
ports, representing the system power flows due @rrespondingly to vel ocity, massand entropy rates, as e in Eq. (12).



The dfort variablesare V , ¥ + K and @ , while the crresponding flow variablesare p, rh, and S; according to the

graph, the power flows in the field when the product of any pair of variablesis positive.

A modulated multibond transformer (drawn as MTF ) is conneded to the inertial port of the IC-fidd. A
transformer is a power conserving element characterized by a relation between the flow variables at bath sides (in this
case p and V) such as sown in Eq. (14), in which the inertia matrix M (dependent on the massnodal vedor) is the

transformer modulus. Since power is conserved through a transformer, the relationship between the @rresponding
effort variablesisV = M'l .F . Noticethat theinertia matrix is always inversible.

A common flow, or multibond 1-junction (drawn as 1) is used to represent the velocity state equation, Eq. (19). In a
1-junction, the flow (in this case V ) is the same for all bonds, and the arresponding effort (in this case, the different

forces) are dgebraically added.
A common effort, or multibond O-junction (drawn as 0), conneded to the capacitive (entropy) port of the IC-field,
is used to represent the entropy state eguation, Eq. (18). In a O-junction, the dfort (in this case @ ) is the same for all

bonds, and the corresponding flows (in this case, the different entropy rates) are algebraically added.

Another multibond O-junction (drawn as 0), conneded to the capacitive (masg port of the IC-fidd, is used to
represent the mass $ate equetion, Eq. (17); ¥ + K isthe same for all bonds, and the wrresponding mass rates are
algebraically added.

Modulated sources are used to represent the terms coming from boundary conditions (integrals over the system
boundary I ), aswell as other sourceterms. There ist effort and flow sources: in each case, either the dfort or flow
is a given function, independent of the power supdied o absorbed. In the velocity state equation, a modul ated

multibond effort source (drawn as S) is used to represent the forces FT(r )+ Fs - In the entropy and mass sate
equations, modulated flow sources (drawn as S;) are used to represent correspondingly the entropy rates
£+ See *S¢ andthemassrates@+%.

The power couplings between the velocity and massgtate equations, Eq. (30), and between the velocity and entropy
state equations, Eq. (32), are also represented by modulated multibond transformers, in which the @rresponding
coupling matrices are the transformer moduli .

Finally, the power coupling between the entropy and mass state equations, Eq. (31), is represented by a modulated
multibond gyrator. A gyrator is a power conserving element characterized by a relation between the dfort and flow
variables at bath sides, in which the coupling matrix isthe gyrator modulus.

A very important feature of Bond Graphsis the concept of causality. The causality is drawn at one end of abond as
a perpendicular stroke, which indicates the diredion in which the dfort is direded; thisis, the dfort isan input variable
to the port conneded to the bond end with the ausal sroke. By implication, the flow is an input variable to the port
conneded to a bond end that does not have a causal stroke. Once the Bond Graph of a system is drawn, there &ist a
sequential procedure for causality assgnment, after which each bond has only one cusal stroke and the dements have
possble ausalities; for instance an effort sourcehas only one possble ausality, so the ausa stroke must be always at
the opposite end of the bond conneded to the source The ausality assgnment all ows to choose a set of state variables
and asaures that the problem is mathematicdly well -posed. The resulting causdity is diown in Fig. 1; it isinteresting to
seethat therestrictionsimposed by the coupling matrices are satisfied.

4. Someresults
4.1. Comparison with other Numerical Methods

In (Balifio, 2001b ; Balifio, 2002 BG-CFD was applied to ane-dimensional compressble, viscous flow with heat
transfer. It was considered a one-dimensional discretization, as $1own in Fig. 2, in which the mass entropy and velocity
nodes are wincident (not staggered).

It is interesting to consider a uniform digribution (thisis, constant piecevise shape functions) of the independent
variables, becuse these ae the simplest and because the state variables correspond to the mass, entropy and velocity
within the @ntrol volumes bounded by the lines located midway between the grid points. For the firgt and last nodes,
half control volumes are defined. With the asaumptions made above, the inertia matrix becomes diagona and the state
equations corresponding to the different nodal state variables can be obtained analytically.

The discontinuities present in the description of the flow fields are handed through the use of distributional
derivatives (Kanwal, 1998, this is derivatives involving ddta functions. In calculating the different terms
corresponding to the state eguations, there must be taken into acocount the @ntinuous contributions, as well as the
distributiona contributions. The distributional contributions are located at the discontinuity surfaces of the independent
variables and weight functions. Since the profiles of the independent variables are constant pieewise, al the terms
involving spatial derivatives only have distributional contributions.

It is interesting to find out whether such smple shape functions can model viscous effeds and hea conduction.
Calculating the terms involving the viscous gress tensor, it can be shown that viscous effeds cannot be taken into



acoount with a @nstant velocity shape function, thisis, FT(‘") =F, =0and S, =0; a least alinear velocity profileis

needed to modd viscous effeds. On the other hand, it can be shown that hea conduction can be modeled with constant
shape functionsif the gradient of the entropy weight functionsis nonzero at the discontinuity surfaces. Consequently, it
was $own that the choice of the shape and weight functions is related to the physical effects that can be rigoroudy
modeled with this methodol ogy.
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Figure 2. Discretization for: (a) an inner node, (b) first node and () last node.

Basaed on the Seand Principle of Thermodynamics, there were investigated restrictions on the entropy weight
functions by considering heat conduction in two reservoirs of therma energy at different temperatures, that are all owed
to communicate through a thermal resistance but are thermally insulated from the surroundngs at the rest of the
surfaces. It was shown that it is aso necessary for the entropy weight functions to deaease with resped to the distance
to the @rresponding entropy nodes.

There were also written lineaized expressons of the sate equations obtained with this discretization, which are
valid for problems with small space tanges of the state variables and can be ompared to the resulting expressons
obtained from other numerical methods, such as Control Volumes or Finite Diff erences.

In the Control Volume approach (Patankar, 1980, the cdculation domain is divided into a number of overlapping
control volumes such that there is one @ntrol volume surroundng each grid point. The differential equations are then
integrated over each control volume, asauming convenient (in general different) profiles for evaluating the flux, source
and unsteady terms. It was found that the density and entropy weight functions evaluated at the control volume
boundaries can be regarded as weight factors in the alculation of the arresponding fluxes, while the gradient of the
entropy weight function evaluated at the control volume boundaries come out to be proportiona to the weight factorsin
the alculation of the mnductive entropy fluxes. The limit values (1 or 0) for the massand entropy weight functions
evaluated at the boundaries corresponds to the full upwind conditions.

In the Finite Difference approach (Tannehill et al., 1997), the derivatives in the differentia equations are replaced
by truncated Taylor-series expansions. Expressons coincident with the ones obtained by using this formulation can be
obtained with the appropriate choice of the weight functions evaluated at the discontinuities. In this case, the limit
values (1 or 0) for the mass and entropy weight functions evaluated at the boundaries corresponds to the forward or
backward approximation for the derivatives.

As a conseguence, BG-CFD includes the Control Volume and Finite Difference methods as particular cases,
obtaining an interpretation of the density and entropy weight functions appeaing in the methodology. In Sedions 4.2
and 4.3 there ae shown simple schemes to determine these functions.

4.2. Convedive-Diffusive Flows

An interesting type of CFD problems are those in which heat transport is due to heat conduction and fluid flow.
These situations define what are known as convedion-diffusion problems (Patankar, 1980. The main characterigtic of
such problemsisthat the velocity field and the density are given.

In (Gandolfo et al., 2001) BG-CFD was applied to convedion-diffusion probems. In the resulting Bond Graph,
which isasimplification of the one shown in Fig. 1, thereis power flow only at the entropy port and, sincethe velocity
field isknown, al thetermsin the entropy state ejuation are represented by generalized flow sources.

One-dimensional examples of heat conduction and convedion-diffusion problems were presented, and the results
were compared to the analytical ones. For simplicity, it was assumed incompressble flow with constant velocity and
thermophysical properties, as well as a uniform grid spacing. Piecevise constant shape functions and pecwise linea



weight functions were assumed for the entropy, as shown in Fig. 3. In thesefigure, x isalocal coordinate with origin at
the entropy node | and S is a parameter independent of position, which must be optimized in order to satisfy a
spedfied condition, regarding the accuracy of the numerical solution; the analysis for this optimization is deferred to
Sedion 4.2.2.

h/2 h/2
| |

h h
Figure 3. Shape and weight functions for an inner node (the weight function is shown in a @wntinuous line).

4.2.1. Heat Conduction

For heat conduction, the reference velocity is zero and the resulting state equations are independent of (. In Fig. 4

there ae presented numerical results for heat conduction, without heat sources (@ =0), in the dab 0< x< L, with
boundary and initial conditi ons:
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—G(O,t)=0 o —A—=(Lt)=H[6(L.t)-6.] ; 6(x0)=6, (33
0 X 0 X

In Eq. (33), A isthethermal conductivity and H isthe heat transfer coefficient , while 6 and 0, are reference
temperatures. The numerical and exact solutions (Cardaw & Jaeger, 1959 for the nondimensional temperature as a

function of x" = % , aecompared in terms of the foll owing nondimensional parameters:
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where Bi and Fo are mrrespondingly the Biot and Fourier numbers, while a,, p and ¢, are correspondingly the
therma diffusivity, the densty and the mnstant volume spedfic heat.

The numerical results sown in Fig. 4 correspond to afairly large number of nodes (n = 201); this has been done
on purpose to show that the formulation is indeed spatialy consistent. Although good acauracy was also oltained with
much coarser grids, this particular problem is very tough for uniform grids, due to the stegp temperature profil es that
appea for Fo<<1.

0=

4.2.2. Convedaion-Diffusion

Results are presented for the mnvedion-diffusion problem in the region 0< x< L, with boundary and initia
conditions:

o(0t)=6, ; o(t)=6, ; 6(x0=8, (39)
6-6, pc UL

60_ L

The analytical solution for g = are also dependent on the Pedet number Pe = , while the

pc,Uh

behavior of the numerica solution is dependent on the grid Pedet number Pe, =

For 3 =0 the propertiesare evenly weighted, resulting the ceatered scheme. The solution show a known behavior:
for grid Pedet numbers greater than a criticd value (Pe, . = 2), the numerical results present oscill ations and are no

longer a good approximation of the analytical solution. These oscill ations can be observed in Fig. 5, for the steady state
solution.
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Figure 4. Heat conduction in aslab. Analytical solutions are shown in continuous lines, while cdculated values are
shown for seleded nodes.
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Figure 5. Convedion-diffusion in a dab, steady state. Linea weight function, upwind. The analytical solution is
shown in a ontinuous line.

A remedy for these unreglitic oscill ations in the solution obtained with the linear weight function in convedion-
diffusion problems is the introduction of upwind schemes. Upwind schemes basically weight unevenly the conveded
properties corresponding to the points located upstream, compared to the pointslocated downstream.

For advedion-diffusion problems, upwind schemes can be introduced naturally by means of the weight functions. It
was proposed to perform an optimization of the parameter 3 by setting the ndition that the numerical scheme has to

give the exact stealy state value for the entropy at the node | for given values of the entropy at the nodes | -1 and
| +1. Thisapproach isloosely related to ahersused in Finite Element Methods (Hughes, 1978). The alculation gves:
1.1 exp(Pe,)+1

(36)
Pe, 2exp(Pe,)-1

B=-

It can be verified that B is an antisymmetric function, with the asymptotic values i% forPe, - +o.Forg =

N -

the properties located downstream have no influencein the integration, and viceversa. With the optimal value of g it
was observed that the solutions obtained are dl consistent, even for very high Pedet numbers, as $own in Fig. 5.



4.3 Compressble Flows

In (Gandolfo et al., 2002) BG-CFD was used to solve the so called "shock tube' probem (Emanud, 1986). The
problem is depicted in Fig. 6. The tube, of length L =1 mand a cross &dion of 0.01m?, has been discretized into 100
equal sedions(n , =Ng=n, = 101). Concerning the shape functions, piecewise constant were adopted for density and
entropy, while cntinuous linea were adopted for velocity, in order to be able to model viscous effects. As weight
functions, linea piecevise were adopted for the entropy, similar to the ones shown in Fig. 3, while linea continuous

were adopted for the density. No-flow and adiabatic boundary conditions were spedfied at bath ends. The following
fluid properties for air -taken from (Fahrenthold & Venkataraman, 1996- were used: reference temperature

0, = 273K, referencedensity p, =1.2955kgm™, viscosity p=1.715310° Pas, constant volume spedfic heat
c,=718Jkg™ K™.

dividing wall

= NN\
ST
N

Fig. 6. The shock tube.

The domain is initially separated in two sedions by a solid wall located & x =0.5m. The gasis at rest in bath
sedions, andtheinitial density andtotal entropy conditions at theleft sedion are p = p, and S=0, while for theright

sedion are p = % p, ad S=4.4247) K 1. At t =0 the solid wall is ruptured, generating a shock wave travelling to

theright and ararefaction wave travelling to the | eft.

The resulting state eguations were solved with a time sep At =1.3107s. As it is usud (Fahrenthold &
Venkataraman, 1996, Sod, 1978 Monaghan & Gingdd, 1983) an artificia viscosity was introduced, in order to damp
the numerical oscill ations at the wave fronts. The numericd and analytical results for the density, entropy per unit mass
velocity and presarre & t =0.001s areshown in Fig. 7 to 10.

Comparing the numerical and analytical solutions, it can be seen that there is a reasonable agreement, being the
numerical results a bit diffusive because of the atificial viscosity. Although more work would be needed in the
sdedion of weight and shape functions, the ssimple ones chosen in this work have shown to be adequate for dealing
with a omplex nonlinea problem involving all physical effeds.
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Fig. 7. Non-dimensional density at t =0.001s, shock-tube problem.
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5. Conclusions

Digtinctive features of a new methodology for CFD based on the Bond Graph theory were presented, as well as
results obtained so far in convedion-diffusion and compressble flow probems. This methodology is focused on the
power structure of the system, offering a new perspedive to solve CFD problems. It is hoped that these findings
encourage other reseachersto use this formalism in more amplex problems.
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