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Abstract: The use of neural networks in the control of dynamic systems always implies in the need of training the neural net in 
order to get an internal model of the system. One of the ways of representing the internal model of the dynamics of the system is to 
design the neural network to learn a system approximation in the form of a discrete model with delayed inputs in the form of a 
NARMA (Nonlinear Auto Regressive Moving Average) model. The neural net designed and trained in this way has the disadvantage 
of needing too many neurons in the input and hidden layers. In this work a new approach to represent the dynamics of the system 
using a feedforward neural network is preliminarily tested. In this approach, using the structure of an ordinary differential equation 
(ODE) numerical integrator it is possible to have the neural network designed to only learn the dynamic system derivative function. 
As a consequence, an unnecessary complexity in the design of the neural network is avoided and it has to only learn an algebraic 
static function. A simple but practical ODE dynamical model of an orbit transfer between Earth and Mars problem is considered for 
the tests. The results obtained reinforce the expectations that the new approach is advantageous in terms of simplicity and 
performance when compared to the approach where the neural network plays the role of a NARMA model. 
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1. Introduction 
 

 The usual approach in neural control schemes employing feedforward neural networks has been that of using the 
neural network to model and play the role of a discrete nonlinear input-output NARMA (Nonlinear Auto Regressive 
Moving Average) type of model, in the approximation of the dynamic system (e.g.: Chen and Bill ings, 1992; Hunt et al, 
1992; Liu et al, 1998). There are at least two difficulties with this approach. The first is the adjustment of the order of 
the input-output model, in terms of the number of delayed responses and of delayed control actions. The second is the 
situation of usually having too many inputs, and thus too many neural connections and related parameters, to deal with 
in the training of the neural network. 

 A possibility yet to be better explored is that offered by the methods of numerical integration of ordinary differential 
equations (ODE) (e.g., Stoer and Bulirsch, 1980). The computer propagation model provided by an ODE numerical 
integrator is a discrete forward model of the dynamic system, which by itself can be used as an internal working model 
in control schemes. These numerical integrators have characteristics which are quite relevant for a dynamical system 
model to be used in control, since they allow: (i) parallel processing, component by component of the dynamic system 
state; (ii) local accuracy to be adjusted by available methods of automatically varying the order or the step size of the 
integrator (e.g., Fehlberg, 1968; Prothero, 1980); and (ii i) estimation of accumulated global prediction errors (e.g., Rios 
Neto and Kondapalli, 1990). 

If in the structure of an ODE numerical integrator algorithm a feedforward neural network is used to approximate 
and to replace the derivative function of the ordinary differential equations dynamic system mathematical model, a 
discrete model is obtained which has quite advantageous characteristics (Rios  Neto, 2001; Wang and Lin, 1998). With 
this approach, the difficulty with too many inputs in the training of the neural network is alleviated, since it is only 
necessary to learn an algebraic and static function, and the inputs are occurrences of the state and control variables in 
their envelope of variation. 

In what follows, in Section 2, for the benefit of those not familiar with neural networks, the fundaments about 
feedforward multiplayer perceptron networks and the property they have of learning nonlinear mappings are introduced. 
In Section 3, the possibility of using an ODE integrator as a discrete forward model of the dynamic system is 
considered, together with the basic idea of taking a feedforward neural network to learn the derivative function of a 
dynamic system, and then use it in the structure of an ODE numerical integrator to get a discrete forward internal model. 
In Section 4, conditions and results of the preliminary tests are presented. In Section 5, conclusions are drawn  
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2. Fundaments: Feedforward Multilayer Perceptrons  
 

Among the types of neural artificial networks used for modeling and identification of systems (Chen and 
Bill ings,1992) the most basic and frequently used is the Multilayer Perceptron made up of layers of basic artificial 
neurons connected forward, as illustrated in Fig.1, for  the ith neuron of a kth hidden layer with nk neurons: 
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Figure 1: Perceptron Artificial Neuron  
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with the activation function a(s) being  typically taken as : 
 

a(s)= 1/(1+ exp(-s)) or a(s)=tanh(s)                                                                   (3) 
 

The inputs to the first hidden layer are n,...,2,1i,xx i
0
i == , the network input vector. For the neurons of the output layer 

)lk( =  it is sufficient to have and are frequently used zero threshold weights ( l
0iw ) and identity activation functions: 
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Feedforward artificial neural networks can be trained to uniformly and with the desired accuracy represent a 

nonlinear and continuous mapping ( see, e.g., Zurada, 1992): 
 

mn RyRDx:Cf ∈→⊂∈∈                                                                                                                                (5) 

 
The existing theory (Cybenko, 1988; Hornik et al, 1989) guarantees that for the case of the Mutilayer Perceptron it 

is enough to have a neural network built with just one hidden layer, as il lustrated in Fig. 2. 
A feedforward network training is usually done by supervised learning from mapping data sets: 
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adjusting (estimating) the weight parameters to approximately fit the artificial neural net correspondent computational 
model to this data of input-output patterns. 

The processing by the trained artificial neural net of the input data ),t(x  to produce outputs ),t(ŷ  can be viewed 

and treated as a parameterized mapping: 
 

)w),t(x(f̂)t(ŷ =                                                                                                                                                  (7) 

 
where w  is the vector of weight parameters. In the case of the perceptron neural net with one hidden layer and 
hyperbolic tangent activation function ( Fig.2), Eq. (7) is expressed as: 
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Figure 2: Multilayer Perceptron: One Hidden Layer 
 

This capacity of feedforward artificial neural nets of representing nonlinear mappings can be used to 
approximately model dynamic systems as long as they are invariant in time ( see, e.g., Chen and Bill ings, 1992). To do 
so, it is usually assumed the possibility of approximating the dynamic system by a NARMA type of discrete model, like: 
 

))tnt(u),...,tt(u),t(u);tnt(x),...,tt(x),t(x(f)tt(x ux ∆∆∆∆∆ −−−−=+                                                        (9) 

 
where t,n,n ux ∆  are to be adjusted, depending upon the problem treated and desired accuracy. This possibility is 

considered to use the feedforward multilayer perceptron to play the role of a discrete model as in Eq. (9), adjusting the 
size of the neural network (number of layers and number of neurons per layer) to attain the desired accuracy, for a given 
choice of t,n,n ux ∆ . 

At this point it is opportune to remember the similar situation that occurs when ODE numerical integrators are 
used and dynamic systems are treated by discrete approximations, li ke in Eq.(9). 
 
3. Numer ical Integrator Discrete Forward Model and Neural Numerical Integrator  
 

Consider a dynamic system, with a mathematical model given by a set of ordinary differential equations: 
 

)u,x(fx =
�

                                                                                                                             (10) 
 
where nRx∈  is the state vector; mRu ∈  is the control vector; )u,x(f  is the derivative function, coming from physical 

laws governing the dynamic system.  
Consider now an ordinary differential equation (ODE) numerical integrator (e.g., Stoer and Bulirsch, 1980) to get 

a discrete approximation of the system of Eq.(10): 
 

)t);tnt(u),...,t(u);tnt(x),...,tt(x),t(x(f~)tt(x oon ∆∆∆∆∆ −−−=+          (11) 

 
where )t);tnt(u),...,t(u);tnt(x),...,tt(x),t(x(f oon ∆∆∆∆ −−−  is the function that results from using evaluations of 

the derivative function of Eq. (10) in the numerical integrator algorithm; on is related to the order of the approximation; 

if its value is greater than zero, one has the situation where a finite difference type of integrator is used (for example, an 
Adams-Bashforth method); if it is zero, a single step type of integrator is used (for example, a Runge-Kutta method); 
and t∆ , the step size, is assumed sufficiently small to assure u(t) constant along the discretization interval. 
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2ŷ
 

mŷ
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The numerical integrator in Eq.(11) can be used recursively as an approximate discrete predictive model of the 
dynamic system of Eq.(10) in internal model control schemes. The error in each step can be controlled by varying step 
size and or the order of numerical integrator; and the resulting numerical algorithm can be processed in parallel for each 
component of the state of the dynamic system. 

In the dynamic system of Eq. (10), the derivative function in the ODE mathematical model is an algebraic function 
that can be approximated by a feedforward neural network: 
 

)ŵ,u,x(f̂~)u,x(fx ==
�

                                                                                                            (12) 
 
where )ŵ,u,x(f̂  is to represent the neural network trained; andŵ  the neural network learned weights. 

Consider now this neural approximation of the derivative function in the structure of an ordinary differential 
equation (ODE) numerical integrator (e.g., Stoer and Bulirsch, 1980) to get a discrete approximation of the system of 
Eq.(10): 
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The neural numerical integrator in Eq.(13) is an approximation of the ODE numerical integrator of Eq. (11) and thus an 
approximate discrete predictive model of the dynamic system of Eq.(10) which can be used as an internal model  in 
control schemes. 
 
4. Preliminary Tests Results 
 

The considered approach was preliminarily tested in the problem of modeling the dynamics involved in a practical 
problem of orbit transfer between Earth and Mars.  

This is a problem where the state variables are the rocket mass m, the orbit radius r, the radial speed w and the 
transversal speed v, and where the control variable is the thrust steering angle θ , measured from local horizontal. The 
ODE (e.g., Sage, 1968) of this dynamic system are:  
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where the variables have been normalized with: µ =1.0, the gravitational constant; T=0.1405, the thrust; with to=0 and 

tf=5, initial and final times, where each unit of time is equal to 58.2 days. The numerically simulated solutions used a 
random control law, where in each discrete interval the control θ  could be changed between π-  and π+ . 

 
 



 
 

Figure 4 – Neural Integrator Modeling of Dynamics of Orbit Transfer Between Earth and Mars.  
 
 Figure 4 shows numerically simulated trajectories of the dynamics of the Earth Mars orbit transfer problem. The 
continuous curve represents the numerical solution with the 4th Runge-Kutta integrator using the original derivative 
function as given by Eqs (14.a) to (14.d); this is considered to be the validation solution, used to evaluate the neural 
modeled solutions. The circles represent the solution obtained with the neural 4th Runge-Kutta and the triangles the 
solution with the neural 4th Adams-Bashforth. In all cases a step size of 0.01 units of normalized time was used, and at 
each 50 propagation steps in time the trajectories were reinitialized, with values of state variables assumed not 
contaminated by errors. This is a reasonable assumption since in practice the state of a system to be controlled is 
frequently corrected in a feedback loop, by processing navigation measured observations with a state estimator 
providing state estimation errors that can be considered negligible for the purpose of the control involved. 
 
 To approximate the vector derivative function, a multiplayer perceptron feedforward neural network with the 
hyperbolic tangent as activation functions, in the hidden layer, and neurons with identity activation, in the output layer, 
was used. The empirical adjustment of the number of neurons in the hidden layer, using a parallel processing Kalman 
fil tering algorithm in the training, led to the adoption of a solution with 41 neurons in this layer, for which a mean square 
error (MSE) of 3.3565e-05 in the test data set was reached. 
 
 In order to get an indication of existence of advantageous characteristics, tests were also done with the 
correspondent NARMA model. To guarantee conditions for comparison the same Kalman training algorithm and the 
same feedforward multilayer perceptron, but trained as a NARMA model to directly model the dynamics of the same 
problem, were used. Just one delay time step was used for state and control in the NARMA neural model, with the same 
delay time of 0.01 units of normalized time, and with the same sequence of controls used in the test with the neural 
integrator; and having as well the trajectories reinitialized at each 50 propagation steps in time, with values of state 
variables which were assumed not contaminated by errors. 
 

 
 



 
 

Figure 5 –NARMA Neural Modeling of Dynamics of Orbit Transfer Between Earth and Mars. 
 
 

In this testing of the NARMA model, with the results depicted in Fig. 5, a MSE error of 2.1983e-07 in the test data 
set was reached. Though this error was of two orders of magnitude better than that with the neural integrator alternative, 
the results obtained with the NARMA neural model were worse than those obtained with the ODE neural integrators, as 
can be seen by visual inspection and comparison with results in Fig. 4. In the numerical simulations, the worst global 
state vector deviation errors with respect to the validation state vector trajectory, observed at the end of propagation arcs 
of 50 steps, were of magnitudes (absolute values) 7.7871e-03 and 2.8704e-02, for the neural integrator and NARMA 
neural model, respectively. These results indicate that for the NARMA neural modeling to be competitive with the ODE 
neural integrator, in terms of accuracy, it would need either to be of higher order, with a greater number of delays in its 
inputs, if a neural net with one hidden layer with the same number of neurons is used, or to use a neural net with more 
neurons, possibly distributed in more than one layer. Thus, the results indication is that, as expected, the combination 
with the ODE integrator allows the use of a simpler neural network, in terms of number neural connections. 
 
5. Conclusions 
 

A new approach to get dynamic systems discrete forward models, to be used in control schemes where an internal 
model is needed, was preliminarily tested. 

In this approach, the structure of ODE numerical integrators are exploited to get neural discrete forward models 
where the neural network has only to learn and approximate the algebraic and static derivative function in the dynamic 
system ODE. 

The preliminary numerical tests indications reinforce the following expected characteristics: 
 
(i) it is a simpler task to train a feedforward neural network to learn the algebraic , static function of the dynamic 

system ODE derivatives (where the inputs are samples of state and control variables), than to train it to learn a 
NARMA type of discrete model ( where the inputs are samples of delayed responses and controls); 

 
(ii ) for the same level of accuracy, the neural network in the neural ODE integrator usually results to be simpler, in 

terms of the necessary number of layers and number of neurons, since it does not have to learn the dynamic law 
, but only the derivative function; 

 
(ii i) the existing knowledge about step size and order adjustment in numerical integration can be used to control 

expected prediction accuracy; 
 



(iv) even in the situation where an ODE mathematical model is not available, as long as dynamic system input 
output pairs are available to be used as training information, the structure of the numerical integrator with a 
feedforward network in place of the derivative function can be trained to get a discrete internal model in 
control schemes; 

 
(v) finally, it is important to consider that the use of a neural network in the dynamic system discrete model will 

naturally allow the implementation of adaptive control schemes, due to the learning capacity of the neural 
network. 

 
6. Acknowledgment. 
 

This work has been possible due to the support given by Instituto Nacional de Pesquisas Espaciais-INPE, to the 
authors; and the doctoral scholarship given by CNPq, to the second author. 
 
7. References 
 
Chen, S., Bil lings, S. A., 1992, “Neural Networks for Nonlinear Dynamic System Modeling and Identification”, Int. J. 

Control, Vol. 56, No. 2, pp. 319-346. 
Cybenko, G., 1988, “Continuous Valued Networks With Two Hidden Layers Are Sufficient” , Technical Report, 

Department of Computer Science, Tufts University.  
Felhlberg, E., 1968, “Classical Fifth, Sixth, Seventh, and Height-Order Runge Kutta Formulas With Step Size Control” , 

Technical Report R-287, NASA, Washington, DC. 
Hornik, K., Stinchcombe, M., White, H., 1989, “Multilayer Feedforward Networks are Universal Approximators” , 

Neural Networks, Vol. 2, pp. 359-366. 
Hunt, K. J., Sbarbaro, D., Zbikowski, R., Gawthrop, P. J., 1992, “Neural Networks for Control Systems – A Survey” . 

Automatica, Vol. 28, No. 6, pp. 1083-1112. 
Liu, G. P., Kadirkamanathan, V. and Billings, S. A., 1998, “Predictive Control for Non-linear Systems Using Neural 

Networks” , Int. Journal of Control, vol. 71, no. 6, pp. 1119-1132. 
Narendra, K. S., Parthasarathy, K., 1990 “ Identification and Control of Dynamical Systems Using Neural Networks”, 

IEEE Transactions on Neural Networks, Vol. 1, pp. 4-27. 
Prothero, A., 1980, “Estimating the Accuracy of Numerical Solution to Ordinary Differential Equations” , in: Gladwell, 

I. And Sayers, D.K., Eds., Computational Techniques for Ordinary Differential Equations, Academic Press, London. 
Rios Neto, A., Rama Rao, K., 1990, “A Stochastic Approach to Global Error Estimation in ODE Multistep Numerical 

Integration” , Journal of Computational and Applied Mathematics, Vol. 30, pp. 257-281. 
Rios Neto, A, 1997, “Stochastic Optimal Linear Parameter Estimation and Neural Nets Training in Systems Modeling”, 

RBCM – J. of the Braz. Soc. Mechanical Sciences Vol. XIX, No. 2, pp. 138-146. 
Rios Neto, A.,, 2001, “ Dynamic Systems Numerical Integrators in Neural Control Schemes” , Proceedings of V 

Brazilian Congress of Neural Networks, Rio de Janeiro, RJ, Brasil .  
Sage A. P., 1968, “Optimum Systems Control” , Prentice-Hall, Inc., Englewood Cliffs, N. J. 
Stoer, J. and Bulirsch, R., 1980, “ Introduction to Numerical Analisys” , Springer Verlag, N.Y. 
Wang, Y.J., Lin, C.T., 1998, “Runge-Kutta Neural Network for Identification of Dynamical Systems in High Accuracy”, 

IEEE Transactions On Neural Networks, Vol. 9, No. 2, pp. 294-307. 
Zurada, J. M., 1992, “ Introduction to Artificial Neural Systems” , West Pub. Co. 
 




