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Abstract: The use of neural networksin the cntrol of dynamic systems always impliesin the need of training the neural net in
order to get an internal model of the system. One of the ways of representing the internal model of the dynamics of the systemisto
design the neural network to learn a system approximation in the form of a discrete model with delayed inputsin the form of a
NARMA (Nonlinear Auto Regressive Moving Average) model. The neural net designed and trained in this way has the disadvantage
of neading too many neuronsin theinput and hidden layers. In thiswork a new approach to represent the dynamics of the system
using afeeadforward neural network is preliminarily tested. In this approach, using the structure of an ordinary differential equation
(ODE) numerical integrator it is possible to havethe neural network designed to only learn the dynamic system derivative function.
As a consequence, an unnecessary complexity in the design of the neural network isavoided and it hasto only learn an agebraic
static function. A simple but practical ODE dynamical model of an abit transfer between Earth and Mars problem is considered for
the tests. The results obtained reinforcethe expedations that the new approach is advantageous in terms of simplicity and
performance when compared to the approach where the neural network plays the role of a NARMA model.
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1. Introduction

The usual approach in reural control schemes employing feedforward neural networks has been that of using the
neura network to model and play the role of a discrete nonlinear input-output NARMA (Nonlinear Auto Regressve
Moving Average) type of model, in the approximation of the dynamic system (e.g.: Chen and Billings, 1992; Hurt et al,
1992; Liu et al, 1998). There are at least two difficulties with this approach. The first is the adjustment of the order of
the input-output model, in terms of the number of delayed resporses and o delayed control adions. The secondis the
situation of usually having too many inpus, and thus too many neural connedions and related parameters, to ded with
in the training of the neural network.

A posshility yet to be better explored is that offered by the methods of numerical integration o ordinary differential
equations (ODE) (e.g., Stoer and Bulirsch, 1980). The computer propagation model provided by an ODE numericd
integrator is a discrete forward model of the dynamic system, which by itself can be used as an internal working model
in control schemes. These numerical integrators have dcharaderistics which are quite relevant for a dynamical system
model to be used in control, since they alow: (i) parald processng, component by component of the dynamic system
state; (ii) locd accuracy to be aljusted by avail able methods of automatically varying the order or the step size of the
integrator (e.g., Fehlberg, 1968; Prothero, 1980); and (iii) estimation of accumulated global prediction errors (e.g., Rios
Neto and Kondapalli, 1990).

If in the structure of an ODE numerical integrator algorithm a feedforward neural network is used to approximate
and to replace the derivative function of the ordinary differential equations dynamic system mathematicd model, a
discrete model is obtained which has quite advantageous charaderistics (Rios Neto, 2001; Wang and Lin, 1998). With
this approad, the difficulty with too many inputs in the training of the neural network is aleviated, since it is only
necessary to lean an algebraic and static function, and the inpus are occurrences of the state and control variables in
their envelope of variation.

In what follows, in Sedion 2, for the benefit of those not familiar with neural networks, the fundaments about
feadforward multiplayer perceptron retworks and the property they have of leaning nonlinea mappings are introduced.
In Section 3, the posshility of using an ODE integrator as a discrete forward model of the dynamic system is
considered, together with the basic idea of taking a feedforward neural network to learn the derivative function of a
dynamic system, and then use it in the structure of an ODE numerical integrator to get a discrete forward internal model.
In Section 4, conditions and results of the preliminary tests are presented. In Sedion 5, conclusions are drawn
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2. Fundaments: Fealforward Multilayer Perceptrons

Among the types of neura artificial networks used for modeling and identificaion of systems (Chen and
Billings,1992) the most basic and frequently used is the Multilayer Perceptron made up of layers of basic atificial
neurons conneded forward, asillustrated in Fig.1, for theith neuron o akth hidden layer with n, neurons:
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Figure 1: Perceptron Artificial Neuron
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with the activation function a(s) being typicdly taken as:
a(s)= 1/(1+ exp(-s)) or a(s)=tanh(s) 3

The inputs to the first hidden layer are xi0 =¥ ,i =12,...,n, the network input vector. For the neurons of the output layer
(k=1) itis sifficient to have and are frequently used zero threshold weights (W, ) and identity adivation functions:

1 1.

Vi =X = _Z Wij le l,l =12,...m 4

Feeadforward artificial neural networks can be trained to uniformly and with the desired accuracy represent a
nonlinea and continuous mapping ( seg e.g., Zurada, 1992):

fOC:xODOR" - yOR™ (5)

The eisting theory (Cybenko, 1988; Hornik et a, 1989) guarantees that for the case of the Mutilayer Perceptron it
isenough to have aneural network built with just one hidden layer, asillustrated in Fig. 2.

A feedforward network training is usually done by supervised learning from mepping data sets:

{(x(),y(t)): y(t) = F(x(1))t=12,..L } (6)
adjusting (estimating) the weight parameters to approximately fit the atificial neural net correspondent computational

model to this data of inpu-output patterns.
The processng by the trained artificial neural net of the input data x(t), to produce outputs y(t), can be viewed

and treded as a parameterized mapping:

y(t) = F(x(t),w) )

where w is the vedor of weight parameters. In the cse of the perceptron neura net with one hidden layer and
hyperbolic tangent activation function ( Fig.2), Eq. (7) isexpressd as:



Ji(1)= 3 w2(tanh] 3 whox (1) + wh ) ®
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Figure 2: Multilayer Perceptron: One Hidden Layer

This capacity of feedforward artificiad neura nets of representing rnonlinea mappings can be used to
approximately model dynamic systems as long as they are invariant in time ( see, e.g., Chen and Billings, 1992). To do
s0, it isusually assumed the possbility of approximating the dynamic system by a NARMA type of discrete model, like:

X(t+At)= f(x(t),x(t-At),...x(t —nAt);u(t),u(t - At),...u(t —n,At)) 9

where n,,n,,At are to be aljusted, depending upon the problem treated and desired accuracy. This posshbility is

considered to use the feedforward multilayer perceptronto play the role of a discrete model as in Eq. (9), adjusting the
size of the neural network (number of layers and number of neurons per layer) to attain the desired accuracy, for a given
choiceof n,,n,,At.

At this point it is opportune to remember the similar situation that occurs when ODE numericd integrators are
used and dynamic systems are treated by discrete goproximations, like in Eq.(9).

3. Numerical Integrator Discrete Forward M odel and Neural Numerical I ntegrator

Consider adynamic system, with a mathematical model given by a set of ordinary differential equations:

x=f(x,u) (20)

where x O R" isthe state vector; u0R™ isthe control vector; f(x,u) isthe derivative function, coming from physicad

laws governing the dynamic system.
Consider now an ordinary differential equation (ODE) numericd integrator (e.g., Stoer and Bulirsch, 1980) to get
adiscrete goproximation of the system of Eq.(10):

X(t+At) = f(x(t),x(t—A4t),...x(t —nyAt);u(t),...u(t—nyAt); At) (11)

where f, (x(t),x(t-4t),...x(t—n,At);u(t),...u(t —n,At); At) is the function that results from using evaluations of
the derivative function of Eq. (10) in the numericd integrator algorithm; N isrelated to the order of the approximation;

if its value is greater than zero, one has the situation where afinite difference type of integrator is used (for example, an
Adams-Bashforth method); if it is zero, a single step type of integrator is used (for example, a Runge-Kutta method);

and At , the step size, is assumed sufficiently small to asaure u(t) constant along the discretizationinterval.



The numericd integrator in Eq.(11) can be used reaursively as an approximate discrete predictive model of the
dynamic system of Eq.(10) in internal model control schemes. The aror in each step can be controlled by varying step
size and a the order of numericd integrator; and the resulting numerica algorithm can be processed in parallel for each
component of the state of the dynamic system.

In the dynamic system of Eq. (10), the derivative function in the ODE mathematicd model is an algebraic function
that can be approximated by a feadforward neural network:

x= f(xu)= f(xu,) (12)

where f(x,u,ﬁv) isto represent the neural network trained; andWw the neural network learned weights.

Consider now this neural approximation of the derivative function in the structure of an ordinary differential
equation (ODE) numerical integrator (e.g., Stoer and Bulirsch, 1980) to get a discrete goproximation of the system of
Eq.(10):

x(t+4t)= fn(x(t),x(t—At),...,x(t—noAt); u(t),...u(t —nyAt); At; W) (13)

The neural numerical integrator in Eq.(13) is an approximation of the ODE numericd integrator of Eq. (11) and thus an
approximate discrete predictive model of the dynamic system of Eq.(10) which can be used as an interna model in
control schemes.

4. Preliminary Tests Results

The considered approacdh was preliminarily tested in the problem of modeling the dynamics involved in a pradical
problem of orbit transfer between Earth and Mars.

This is a problem where the state variables are the rocket massm, the orbit radius r, the radial speed w and the
transversal spedd v, and where the control variable is the thrust steeiing angle 8, measured from local horizontal. The
ODE (e.g., Sage, 1968) of this dynamic system are:

m=-0.0749 (14.9)

r=w (14.b)
2 .

W:v__%+TE$|n9 (14.0)
r r m

\./:-WIE/+TE:039 (14.0)
r m

where the variables have been namalized with: u =1.0, the gravitational constant; T=0.1405, the thrust; with t,=0 and

t=5, initial and final times, where each wnit of time is equal to 58.2 days. The numericaly simulated solutions used a
random control law, where in each discrete interval the control 6 could be changed between - 7T and + TT.



— Orniginal Fourth Order Runge-Kutta
1o 105 < Meural Fourth Order Runge-Kutta
! ! ! : w7 Meural Fourth Order Adams-Bashforth
095}---% b dmmmeees e - ' ' i
- . | | o T 7
E 09 ________ T™ ~ L I I E |
= ! ! ! = !
S 085F------- P demmm-- — < 0.95 \
z l l l 2z
®m OBt------- t-—- - H4--=-= —H----=== — m
o I I ¥ons
D?E ] | |
0.7 0.85
0 0
0.02 1.1
0
[n] =t
o o 1.05
= 0.0z =
(1] [
> >
@ 004 D
z a ¢
5] 3]
-0.06
-0.08 0.95
0 0
Mormalized Time Mormalized Time

Figure 4 — Neural Integrator Modeling of Dynamics of Orbit Transfer Between Earth and Mars.

Figure 4 shows numericdly simulated trgjedories of the dynamics of the Earth Mars orbit transfer problem. The
continuous curve represents the numerical solution with the 4™ Runge-K utta integrator using the original derivative
function as given by Egs (14.8) to (14.d); this is considered to be the validation solution, used to evaluate the neural
modeled solutions. The drcles represent the solution obtained with the neural 4™ Runge-Kutta and the triangles the
solution with the neural 4™ Adams-Bashforth. In all cases a step size of 0.01 units of normalized time was used, and at
eah 50 propagation steps in time the trajectories were reinitialized, with values of state variables asaumed na
contaminated by errors. This is a reasonable asumption since in pradice the state of a system to be controlled is
frequently corrected in a feedbadk loop, by processng navigation measured dbservations with a state estimator
providing state estimation errors that can be mnsidered negligible for the purpose of the control involved.

To approximate the vedor derivative function, a multiplayer perceptron feedforward neural network with the
hyperbolic tangent as adivation functions, in the hidden layer, and neurons with identity activation, in the output layer,
was used. The empiricd adjustment of the number of neurons in the hidden layer, using a parallel processng Kalman
filtering algorithm in the training, led to the adoption of a solution with 41 neuronsin this layer, for which a mean square
error (MSE) of 3.3565e-05 in the test data set was reached.

In order to get an indication of existence of advantageous charaderistics, tests were dso done with the
correspondent NARMA model. To guarantee conditions for comparison the same Kaman training algorithm and the
same feedforward multilayer perceptron, but trained as a NARMA model to diredly model the dynamics of the same
problem, were used. Just one delay time step was used for state and control in the NARMA neural model, with the same
delay time of 0.01 units of normalized time, and with the same sequence of controls used in the test with the neural
integrator; and having as well the trgjectories reinitialized at each 50 propagation steps in time, with values of state
variables which were assumed nat contaminated by errors.
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Figure 5-NARMA Neural Modeling of Dynamics of Orbit Transfer Between Earth and Mars.

In thistesting of the NARMA model, with the results depicted in Fig. 5, a M SE error of 2.1983e-07 in the test data
set was readied. Though this error was of two orders of magnitude better than that with the neural integrator alternative,
the results obtained with the NARMA neural model were worse than those obtained with the ODE neural integrators, as
can be seen by visual inspection and comparison with results in Fig. 4. In the numericd simulations, the worst global
state vedtor deviation errors with respect to the validation state vector trajectory, observed at the end of propagation arcs
of 50 steps, were of magnitudes (absolute values) 7.7871e-03 and 2.8704e-02, for the neural integrator and NARMA
neural model, respectively. These results indicate that for the NARMA neural modeling to be competitive with the ODE
neural integrator, in terms of accuracy, it would need either to be of higher order, with a greater number of delaysinits
inputs, if a neural net with one hidden layer with the same number of neuronsis used, or to use a neural net with more
neurons, possbly distributed in more than one layer. Thus, the results indication is that, as expected, the combination
with the ODE integrator al ows the use of asimpler neural network, in terms of number neural connedions.

5. Conclusions

A new approad to get dynamic systems discrete forward models, to be used in control schemes where an internal
model is needed, was preliminarily tested.

In this approach, the structure of ODE numericd integrators are exploited to get neural discrete forward models
where the neural network has only to learn and approximate the algebraic and static derivative function in the dynamic
system ODE.

The preliminary numerical tests indications reinforce the following expeded characteristics:

(i) it isasimpler task to train a feedforward neural network to lean the algebraic , static function of the dynamic
system ODE derivatives (where the inpus are samples of state and control variables), than to train it to lean a
NARMA type of discrete model ( where the inputs are samples of delayed responses and controls);

(i) for the same level of acaracgy, the neural network in the neural ODE integrator usually results to be simpler, in
terms of the necessary number of layers and number of neurons, since it does nat have to learn the dynamic law
, but only the derivative function;

(iit) the eisting knowledge eout step size and ader adjustment in numericd integration can be used to control
expected predictionacaracy;



(iv) even in the situation where an ODE mathematical model is nat available, as long as dynamic system input
output pairs are available to be used as training information, the structure of the numericd integrator with a
feadforward network in place of the derivative function can be trained to get a discrete internal model in
control schemes;

(v) findly, it is important to consider that the use of a neura network in the dynamic system discrete model will
naturally allow the implementation d adaptive control schemes, due to the learning capacity of the neural
network.
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